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ABSTRACT

In images of sedimentary or granular material, or simulations of binary

(two-phase) granular media, in which the individual grains are resolved, the

complete size distribution of apparent grain axes is well-approximated by the

global power spectral density function derived using a Morlet wavelet. This

approach overcomes many limitations of previous automated methods for

estimating the grain-size distribution from images, all of which rely on either:

identification and segmentation of individual grains; calibration and/or rela-

tively large sample sizes. The new method presented here is tested using: (i)

various types of simulations of two-phase media with a size distribution, with

and without preferred orientation; (ii) 300 sample images drawn from 46 pop-

ulations of sands and gravels from around the world, displaying a wide vari-

ability in origin (biogenic and mineralogical), size, surface texture and shape;

(iii) petrographic thin section samples from nine populations of sedimentary

rock; (iv) high-resolution scans of marine sediment cores; and (v) non-

sedimentary natural granular patterns including sea ice and patterned ground.

The grain-size distribution obtained is equivalent to the distribution of appa-

rent intermediate grain diameters, grid by number style. For images contain-

ing sufficient well-resolved grains, root mean square errors are within tens of

percent for percentiles across the entire grain-size distribution. As such, this

method is the first of its type which is completely transferable, unmodified,

without calibration, for both consolidated and unconsolidated sediment, iso-

tropic and anisotropic two-phase media, and even non-sedimentary granular

patterns. The success of the wavelet approach is due, in part, to it quantifying

both spectral and spatial information from the sediment image simulta-

neously, something which no previously developed technique is able to do.

Keywords Grain size, granular patterns, sediment, texture analysis, wavelet
analysis.

INTRODUCTION

Much insight can be gained from the grain-size
distribution of granular materials, which are
ubiquitous in the natural world. Measurements of
deposited sediments have traditionally been
hampered by: the intrusiveness of physical
sampling; the expense of laboratory analyses of

these samples; and, in some cases, the logistics of
retrieval and transport which is especially the
case for sub-aqueous or remote environments.
Such information, automatically (and non-intru-
sively) obtained from photographs of such mate-
rial provides a number of advantages over
traditional forms of grain-size analysis, particu-
larly in terms of money and time savings,
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allowing much greater coverage and resolution
compared to traditional laboratory methods, such
as sieving and laser diffraction (Rubin, 2004;
Barnard et al., 2007). In dynamic environments,
such as contemporary river beds, sea beds and
aeolian sediment surfaces which are constantly
changing under fluid power, robust automated
image-processing techniques will, with minimal
equipment, allow time-series of direct measure-
ments of sediment properties for extended peri-
ods of time. This dense sampling might uncover
physical processes/phenomena that traditional
sampling, constrained by time and manual effort/
expense in the field and subsequently in the labo-
ratory, cannot (e.g. Paola & Seal, 1995; Mao et al.,
2011; Nelson et al., 2012). In addition, dense
spatial sampling from images taken in the field,
or geo-rectified sediment imagery obtained from
aerial (e.g. Carbonneau et al., 2004, 2005) or even
satellite platforms, will permit the creation of
maps of sediment properties covering large con-
tinuous areas. It might even be possible to use
similar techniques on hydro-acoustic images of
lake, sea and river beds. For the above scenario to
be a reality, techniques are required which are
highly accurate and fully automated, and ideally
which require no calibration.
Grain size has been estimated from photo-

graphs of sediment samples (with sufficient reso-
lution such that individual grains can be
identified by eye) for several decades (e.g.
Kellerhals & Bray, 1971; Adams, 1979; Ibbeken &
Schleyer, 1986; Butler et al., 2001; Buscombe &
Rubin, 2012b). If the physical sample is not
required for laboratory-based analyses of physical
and/or chemical properties of the sediment, auto-
mated analysis of sediment imagery is becoming
a popular means by which to obtain dense mea-
surements of grain size (e.g. Barnard et al., 2007;
Duller et al., 2010; Gallagher et al., 2011; Whit-
taker et al., 2011; Baptista et al., 2012).
Various methods have been reported which

aim to provide robust and automated estimates
of grain size from images, falling under two
broad categories classified by Buscombe et al.
(2010) as, respectively, ‘geometrical’ and ‘statisti-
cal’. Both techniques require imagery where the
smallest grains are resolved by at least a few pix-
els. Geometrical methods use image processing
techniques (principally, thresholding and seg-
mentation) to isolate and measure the visible
axes (or portions of whole axes) of each indivi-
dual grain (e.g. Graham et al., 2005; Chang &
Chung, 2012). In images of packed sediment,
grains are touching with no apparent void space.

The problem of touching and overlapping grains,
and therefore no ‘background’ intensity against
which to threshold, as well as the multifarious
nature of sedimentary material, makes it difficult
to design a universally applicable grain edge
detection algorithm which works equally well
for a wide range of sediment types (Buscombe
et al., 2010; Buscombe & Rubin, 2012b). If the
segmentation algorithm is imperfect (i.e. if any
grain is over-segmented or under-segmented, cf.
Mao et al., 2011) then errors accumulate
non-linearly.
Statistical methods characterize grain size

using a measure sensitive to image ‘texture’. To
date, these approaches have used autocorrelation
(e.g. Rubin, 2004; Warrick et al., 2009), semivari-
ance (e.g. Carbonneau et al., 2004, 2005) or one
of several other methods, including fractals (e.g.
Buscombe & Masselink, 2009) and grey-level
co-occurrence matrices (e.g. Dugdale et al.,
2010). The statistical approach is substantially
different from other forms of grain-size analysis,
image-based or otherwise, because individual
grains are not measured directly. One advantage
of this approach is that success of the technique
does not rely on successful identification, seg-
mentation and sizing of each individual grain.
However, all the above statistical methods
require some form of calibration which tends to
be site-specific or sediment-population specific.
This prompted Buscombe et al. (2010) and
Buscombe & Rubin (2012b) to propose generic
expressions for, respectively, grain-size mean
and standard deviation. Based on the informa-
tion in the power spectrum of the image alone,
moments of the grain-size distribution are esti-
mated without resolving the entire distribution
or measuring the individual grains directly.
These estimations require neither calibration for
a specific sediment type or geographic location,
nor reliance on grain detection using advanced
image processing; they therefore can be thought
of as ‘transferable’ between sites.
A grey-scale (8-bit intensity) image of sediment

can be treated as a continuous random field
because the image is composed of numerous
objects, with no correlation between grain loca-
tion and grain colour, shape or size, and no ‘back-
ground’ intensity (Buscombe & Rubin, 2012b). As
such, the image is described completely in a
statistical sense by its mean and power spectrum
(Buscombe, 2008; Buscombe et al., 2010). Spec-
tral analysis measures the strength of periodic
components of the two-dimensional (2D) image
intensities at different frequencies. The mean
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grain size is related to a ‘grain-scale’ wave
number, found to be associated with the offset at
which the autocorrelogram of the image, R (auto-
correlation as a function of pixel offset), falls to
half its value at zero offset (Buscombe et al.,
2010). This estimate, grid by number style, is
equivalent to the mean of all intermediate visible
grain axes in the image. Due to resolution consid-
erations, the physical area represented by a sam-
ple photograph is generally small compared to
the scale over which deterministic structures in
the sediment exist; however, this can be violated
by grain-scale deterministic structure such as
aligned/imbricated particles. If the sediment
grains have a dominant preferred orientation then
the technique may slightly over-estimate interme-
diate grain size, although to date this has not been
quantified rigorously.
Buscombe & Rubin (2012b) provided experi-

mental and numerical evidence that the shape of
the radial average of a (2D) power spectral den-
sity function becomes less exponential with more
grain-size fractions. This one-dimensional R was
shown to be the normalized sum of the exponen-
tial decays in R corresponding to each of the
grain sizes present. By quantifying the divergence
in form between R from a sample image and R of
an idealized material with the same mean but
zero variance, an accurate measure of grain-size
standard deviation can be derived, without hav-
ing to measure the individual grains directly.
However, the statistical methods of Buscombe

et al. (2010) and Buscombe & Rubin (2012b) only
provide highly accurate estimates of grain-size
mean and standard deviation (within a couple of
tens of percent), not the full grain-size distribu-
tion, for relatively well-sorted sediment (grain
size in a sample typically varying over 1 to 2
orders of magnitude). These methods are based
on a Fourier approach which treats the image as
though it is stationary (same mean, variances and
range of frequencies throughout the image). How-
ever, this assumption is often violated, particu-
larly when the image captures relatively small
numbers of individual grains. Buscombe et al.
(2010) suggested that there should be at least
1000 individual grains present in an image. Of
course there might be fewer grains if the sediment
is relatively coarse and the field of view relatively
small, which could be particularly problematic
for images of sedimentary thin-sections, and sedi-
ment cores which are narrow and in which grain
size can change rapidly with depth.
Based on the above, it has become clear that

neither the ‘geometrical’ nor the ‘statistical’

approach has been completely satisfactory, moti-
vating the present study to develop an improved
algorithm. If an image of a sediment bed is con-
sidered as a combination of both discrete
(individual grains and their boundaries) and
continuous (the randomness of grain placement
and their surface variations) features, progress
might therefore require a technique which
merges the benefits of both geometrical and
statistical approaches. Here, the continuous
wavelet transform is explored and provides a
basis for such a technique. The wavelet trans-
form provides both spatial and spectral resolu-
tion which means that, whilst it is essentially a
spectral method which decomposes an image of
sediment into variance (or ‘energy’) as a func-
tion of frequency (related to statistical methods
for quantifying grain size), importantly it also
provides information on where peaks and
troughs in energy occur, which could be used to
identify the locations of individual grains.
Here, a new calibration-free (therefore transfer-

able or ‘universal’), conceptually simple method
is proposed for accurate estimates of the entire
grain-size distribution. It follows similar princi-
ples to Buscombe et al. (2010) and Buscombe &
Rubin (2012b), treating an image of sediment or
granular pattern as a random field, and then
using spectral techniques to uncover the domi-
nant spatial wavelengths within. The present
method, however, adopts the wavelet-derived
rather than Fourier-derived power spectrum.
Techniques based on the discrete wavelet and

wavelet packet transform have long been used to
classify images based on quantifying texture
(e.g. Laine & Fan, 1993). Wavelet analysis has
also proved useful in quantifying the orientation
and length of pore networks in thin sections
(Gaillot et al., 1999) and pore networks in por-
ous media (Qi & Neupauer, 2008, 2010). Here, it
is demonstrated that the global wavelet power
spectrum based on a Morlet mother wavelet pro-
vides an excellent calibration-free and transfer-
able measure of grain-size distribution in images
of natural sediment and other similar granular
patterns. Because wavelet analysis does not
require that the image is stationary or statisti-
cally homogeneous (Qi & Neupauer, 2008), the
present technique, compared to previous meth-
ods, is less sensitive to the absolute number of
grains present; more applicable for poorly sorted
sediments (grain size in an individual image/
sample typically varying over � 2 orders of
magnitude), less sensitive to any preferred orien-
tation of grains in the image and applicable to
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images of sediment with and without an appa-
rent void fraction (pore spaces between grains).

METHOD

The spatial distribution of pixel intensity in an
image of sediment (Fig. 1A and B) is a continu-
ous random field (Buscombe et al., 2010) and, as
such, the power spectral density simultaneously
captures information on all scales of variability.
These scales are associated with different grain
sizes, but also image noise and any scale associ-
ated with light and shadows greater than the
grain scale.
Wavelet transforms provide a mathematically

robust and unified framework for multi-scalar
scale analysis. The signal is decomposed using a
series of functions (wavelets) created by scaling
and translation of a base function called the
mother wavelet. The wavelet transform is
defined as the convolution of discrete sequence
yn (n = 0, …, N � 1 sampled at equal spacing,
δy, i.e. each pixel), where y denotes the long
dimension of the image, with a scaled and trans-
lated version of a normalized mother wavelet
function w0, in one dimension given by (Tor-
rence & Compo, 1998):

WnðsÞ ¼
ffiffiffiffiffiffi
dy
s

r XN�1

n0¼0

yn0w�
0

ðn0 � nÞdy
s

� �
ð1Þ

where δy is the spacing in yn (i.e. one pixel), the
apostrophe indicates transpose and the asterisk
symbolizes complex conjugate. By varying the
scale, s, and translating in location, n, a 1D ser-
ies is expressed in a 2D parameter space (n, s).
This 2D parameter space, sometimes called a
scalogram, is computed by setting the scale (s)
to a constant value and solving across all loca-
tion values (n), then repeating for all scales.
These scales can be specified. Here, scales less
than three pixels were not considered, nor were
scales greater than a third of the greatest dimen-
sion of the image. The complex-valued Morlet
wavelet is adopted as the mother wavelet,
defined as:

w0ðgÞ ¼ p�
1
4eix0ge�g2=2 ð2Þ

where i is the imaginary unit, non-dimensional
frequency x0 is 6 and g is dimensionless space
such that the wavelet is stretched by varying.
The √δy/s term in Eq. 1 ensures that the wavelet
transform is weighted by yn only, and not by

Eq. 2. The Morlet is adopted because different
spatial scales are uncorrelated (Laine & Fan,
1993), and because it is very well-resolved in
both the spatial and frequency domains (in the
spatial domain, it has x0 peaks in a relatively
narrow band, and a single peak in the frequency
domain – the reader is referred to Torrence &
Compo (1998) for more details). Being a non-
orthogonal wavelet, it does not spuriously count
the power contribution of certain frequencies
(Farge, 1992), and therefore the power spectrum
has peaks, at accurate frequencies, roughly
proportional to the squared amplitudes of the
signal (cf. Grinsted et al., 2004).
Prior to analysis, the image is zero-padded to

the next power of 2 greater than N, the largest
dimension of the image. No image filtering is
required. The wavelet transform Eq. 1 is calcu-
lated for a representative selection of yn, both
rows and columns. Typically, the analyses per-
formed here utilized one half or one third of
rows and the same proportion of columns. For
each yn, the linear trend is removed and the
wavelet transform is computed using Eq. 1.
When wavelet transforms have been computed
for all yn, the global wavelet power spectrum is
calculated, given by:

�W2 ¼ 1

N

XN�1

n¼0

jWnðsÞj2 ð3Þ

The spectrum is called ‘global’ because it aver-
ages over location, retaining information only on
the scale. The global wavelet spectrum provides
an unbiased and consistent estimate of the true
power spectrum of a spatial-series (Percival,
1995). The analysis may be carried out in 2D
(e.g. Qi & Neupauer, 2010); however, for sim-
plicity, here the average of spectra from simpler
1D transects through the image was used.
The radial average of the Fourier-derived

power spectral density (calculated using a stan-
dard Fast Fourier Transform approach, or FFT,
according to Buscombe & Rubin, 2012b) tends to
show large energy at scales smaller than grains,
suggesting over-sensitivity to small-wavelength
variations in image intensity associated with
noise and intra-granular variations (for example,
surface texture of individual grains). In addition,
any directionality or non-diffusivity in the light-
ing causes disproportionately large energy at
scales larger than those at the grain scale.
The above is illustrated by analysis of an

image of well-sorted oolitic sediment from a
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beach in the Bahamas (Fig. 1A). One row of
pixel values (Fig. 1B) serves to illustrate the
treatment of image intensity as a continuous
random variable. At each scale, the continuous
wavelet transform (Fig. 1C, left plots) is used to
compute the power spectrum at that scale
(Fig. 1C, right plots). The wavelet transform of
the data at each scale (Fig. 1C, left) is computed
as a convolution of the data (Fig. 1B) and a
scaled and translated mother wavelet. The
power spectrum (Fig. 1C, right) is the squared
amplitudes of the wavelet transformed data.
This information is compiled for each scale, and
shown as the full continuous wavelet transform
of the data in Fig. 1B, depicted in Fig. 1D,
which shows spectral power (shade) as a func-
tion of scale (wavelength) and pixel location
along the data series. Scales and locations where
there is low spectral power (few grains with that
wavelength) are dark. Light areas correspond to
grain wavelengths with high spectral power
(large number of grains with that wavelength).
The blanked-out peripheral area of the spectrum
in Fig. 1D is known as the ‘cone of influence’
(COI), and is the portion of the spectrum sensi-
tive to end-effects, calculated according to Grin-
sted et al. (2004). Spectral power outside the
COI tends to peak at a scale around 100 to 300
pixels. If this wavelet spectrum is calculated for
a representative number of rows and columns
through the image in Fig. 1A, and averaged in
location, then these 1D spectra averaged again,
this produces the ‘global’ wavelet spectrum
Eq. 3 which is the dotted line in Fig. 1E in nor-
malized form. The grain-size distribution com-
piled from intermediate diameters of grains
measured manually on the image (Fig. 1E, solid
line), following the method of Barnard et al.
(2007), again normalized to sum to unity, is
well-approximated by the wavelet-derived global
power spectrum but not the normalized Fourier-
derived power spectrum (Fig. 1E, dashed line).
The Fourier-derived spectrum contains a signifi-
cant amount of energy associated with large
wavelengths due to aliasing. The wavelet-
derived spectrum, in contrast, will consistently
taper to zero energy at these wavelengths which
are much greater than any grain scale.
Wavelet analysis is a more powerful method

for sediment images than a Fourier analysis based
on the windowed FFT for two principal reasons.
Firstly, it averages over both space and frequency
which allows it to circumnavigate the strict
stationarity requirement of Fourier-based spectral
estimation. Secondly, frequency resolution is

constant over frequency, whereas in a FFT analy-
sis frequency resolution decreases with increas-
ing frequency (Farge, 1992), meaning that the
small wavelengths cannot be well-resolved. The
two issues are related: the windowed FFT com-
putes a handful of individual spectra over the
data. The larger the spatial window used, the
better the frequency resolution of the spectra.
However, improved frequency resolution is
achieved by reducing spatial resolution. In a
global wavelet transform, this compromise is, in
effect, avoided. The continuous wavelet trans-
form does not window across the data and there-
fore provides a better spatial resolution, at the
expense of relatively poor frequency resolution at
very high frequencies. In the case of traces of
intensity in sediment images, these high frequen-
cies will almost always be intra-grain scale ‘noise’
in a well-resolved image of sediment where
grains are covered by several pixels. Both spectral
and spatial information is being heavily averaged
in such an approach, rather than one or other
being discarded which occurs in geometrical
(image-processing based) and Fourier-based
approaches to grain size from images.
If the global wavelet power spectrum is a non-

biased estimate of the variance contributions of
grain-scale wavelengths within an image of sedi-
ment then, where P(d) is distribution of grain
sizes d = 1/ps (where s is the wavelet scale,
normalized such that ΣP(d) = 1) in an image
composed wholly of grains with no interstices
or ‘background’ intensities:

PðdÞ �
�W2P �W2

ð4Þ

For the spectrum to be non-biased, and in order
for the variance at the wavelength of the indivi-
dual grain(s) to be large, the image intensities
across individual grains must be more slowly
varying and larger (brighter) than the abrupt and
smaller (darker) intensity differences between
grains (in interstices).

WAVELET SPECTRA OF SOME
IDEALIZED CASES

To test the above method, wavelet analysis was
carried out on some idealized binary simulated
image of granular material. Similar simulations
were used by Buscombe et al. (2010) and
Buscombe & Rubin (2012a) to explore the limits
and sensitivities of automated image-based

© 2013 The Author. Journal compilation © 2013 International Association of Sedimentologists, Sedimentology, 60, 1709–1732

1714 D. Buscombe



grain-size techniques, because it is relatively
simple to control grain size, shape, apparent
porosity and other attributes of sediments
independently.
Simulated images were composed of either

spheres or ellipses possessing a log-normal size
distribution with an equal mean (l) and stan-
dard deviation (r). Grain size and position were
independent. The images were generated using
the algorithms detailed in Tschopp et al. (2008).
The distributions of particle major axes were
identical for each set of images composed of cir-
cles (Fig. 2) or ellipses (Fig. 3), leaving only the
areal void fraction, φ (in these cases, the propor-
tion of pixels with value 0), to vary. For the
cases using elliptical particles, the major axis
length was always twice the minor axis length.

Void pixels are zero-valued, and thus contain no
spectral power, which means the method given
by Eq. 4 must be slightly modified to factor in
only the areal proportion of the image covered
by grains, therefore grain sizes are given by
d = (1/pφ)s.
The root mean square (RMS) error, Ψ, and

mean absolute error, M, between a measured,
qmeas, and estimated, qest, quantity (both of
length n) was computed for a selection of com-
monly used distribution percentiles, Pm (where
m symbolizes percentile). Mean absolute and
RMS errors are given by, respectively:

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

qimeas � qiest
� �2q

n
ð5Þ

Fig. 2. Simulated two-phase media (white areas are particles, black areas are void spaces) consisting of circles,
along with their known particle size distributions (continuous lines) and estimated size distributions (dashed
lines). In each subplot, the horizontal axis is grain size in pixels and the vertical axis is proportion less than. The
title of each subplot is the void fraction of the simulation underneath. Error statistics for these samples are
presented in Table 1.
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and:

M ¼ 1

n

X
jqimeas � qiestj
� � ð6Þ

In addition, to aid comparisons with previous
studies (such as Graham et al., 2005; Warrick
et al., 2009; Buscombe et al., 2010), the irreducible
random error was calculated, defined as the RMS
error that cannot be accounted for by the mean
absolute error and given by (Graham et al., 2005):

ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 �M2

q
ð7Þ

The agreement was reasonably good, as illus-
trated graphically by comparing the solid and

dashed lines in Figs 2 and 3 which show, respec-
tively, the measured and estimated particle size
distributions overlying the images. The errors are
reported in Table 1 for the spherical particle sim-
ulations and in Table 2 for the elliptical particle
simulations. Discrepancies were uncorrelated
with φ and, in general, were larger for the tails of
the distribution than for the central percentiles,
which is to be expected because the sample size
of those particles in the tails of the size distribu-
tion is smaller. Errors were generally smaller for
the images composed of elliptical particles (ei of
around 10% compared to 12 to 18% for the
spherical particles) probably because the
absolute number of particles in those images
(between 2448 and 3320, depending on φ) was
greater than for the images composed of spheres

Fig. 3. Simulated two-phase media (white areas are particles, black areas are void spaces) consisting of ellipses
(the major axis is always twice the minor axis length), along with their known particle size distributions (continu-
ous lines) and estimated size distributions (dashed lines). In each subplot, the horizontal axis is grain size in pix-
els and the vertical axis is proportion less than. The title of each subplot is the void fraction of the simulation
underneath. Error statistics for these samples are presented in Table 2.
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(between 1427 and 2132, depending on φ), owing
to the generally smaller grain size.

NATURAL SEDIMENT SAMPLES

The above analysis of idealized sediments dem-
onstrates that the wavelet method is suitable for
images composed of regularly and identically
shaped non-touching, non-overlapping particles
(possessing a log-normal size distribution) sepa-
rated by voids. The errors are small even though
each image was composed of relatively small
absolute numbers of particles (between ca 1500
and 3000). In this section, the same method is
tested on images of natural sediments which are
non-uniform in shape, touching or overlapping
with no apparent void fraction, and non-uniform
in shading (both between and within individual
grains).
The wavelet method Eq. 4 was tested using

three sets of images summarized in Table 3. Set
A is a collection of 262 digital photographs of
samples representing eight distinct sedimentary
populations. The collection is the same as that
used by Buscombe & Rubin (2012b) and contains
images of sand and gravel sediments from
beaches, rivers and continental shelves. An
example image from each of the eight popula-
tions is shown in Fig. 4 (one population is
represented twice – subplots a and c – so there
are nine images in Fig. 4). Each of the eight pop-
ulations was collected with a different imaging
system.

The size distribution of intermediate axes of
apparent (surface) grains was compiled for each
image following the on-screen manual method
of Barnard et al. (2007). This time-consuming
process is the only way in which to reliably
obtain a comparable grain-size distribution to
that provided by image-based methods (Warrick
et al., 2009; Buscombe et al., 2010; Baptista
et al., 2012).
The method was also tested using a collection

of digital photographs of petrographic thin sec-
tion samples from sedimentary rocks, named set

Table 3. Summary of data sets used to test the wave-
let method.

Number of sample
images and
sediment
populations Description

Set A 262 (drawn from
eight populations)

Unconsolidated
sands/gravels, different
imaging system per
population

Set B 9 (one from
each population)

Thin sections of
sandstones, same
imaging system per
population

Set C 38 samples (one
from each
population)

Unconsolidated
sands/gravels, same
imaging system per
population

Table 1. Error in percentile estimates for the log-normal binary spheres (l = 47 pixels, r = 40 pixels). Units are
pixels. Values in parentheses have been normalized by the particle size associated with that percentile, and multi-
plied by 100 to give a percent error.

Percentile P10 P16 P25 P50 P75 P84

Ψ 4�35 (29%) 5�34 (31%) 6�25 (31%) 6�87 (23%) 6�97 (15%) 10�83 (19%)
M 3�71 (25%) 4�39 (26%) 5�02 (25%) 5�93 (20%) 5�23 (11%) 8�39 (15%)
ei 2�28 (15%) 3�03 (18%) 3�73 (18%) 4�60 (12%) 4�60 (10%) 6�84 (12%)

Table 2. Error in percentile estimates for the log-normal binary ellipses (l = 34 pixels, r = 26 pixels). Units are
pixels. Values in parentheses have been normalized by the particle size associated with that percentile and multi-
plied by 100 to give a percent error.

Percentile P10 P16 P25 P50 P75 P84

Ψ 2�73 (24%) 3�13 (23%) 3�54 (22%) 3�70 (15%) 5�31 (13%) 10�31 (19%)
M 2�44 (21%) 2�81 (21%) 3�22 (20%) 2�94 (12%) 4�52 (11%) 8�42 (16%)
ei 1�24 (11%) 1�38 (10%) 1�47 (9%) 2�25 (9%) 2�81 (7%) 5�94 (11%)
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B (Fig. 5). The major differences between the sed-
iment surface images and the thin section images
are the pore space and the non-overlapping grains
with no relief. The apparent grain-size distribu-
tion was measured from the nine section images
in the same way as above. To estimate φ, a simple
threshold was applied to each image which
counted as void any pixel with an intensity value
less than the 5% value of the cumulative distribu-
tion of all pixel values for that image.

Finally, the method was tested using another
set of images of unconsolidated sand and gravel
sized sediments, named set C (Fig. 6). Compared
to set A, images in set C were characterized by
generally fewer individual grains. In most images,
there were much fewer than 1000 grains, the
number suggested by Buscombe et al. (2010) to be
the lower limit on sample size for their method
for grain size based on the Fourier-derived spec-
trum of the image. Set C also contained a larger

A B C

D E F

G H I

Fig. 4. Example sample images from set A: the populations of natural beach, river and continental shelf sedi-
ments tested, as listed in Table 3. The current technique is equally applicable, unmodified, to all of these sedi-
ment types.
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diversity of sediment types represented (biogenic
and mineralogical, including many volcanic
sands and gravels) and their characteristic surface
textures and distributions of shape. Images in set
C were all taken with the same imaging equip-
ment (handheld digital camera and controlled
indoor lighting). Once again the apparent grain-
size distributions were compiled using the on-
screen manual ‘point-counting’ method.
In all of the images in sets A to C, the smallest

grains are resolved by a few pixels, and the out-
lines of these grains are seen under zoom. In
each case, the image plane was parallel with the
object plane, or as close as not to matter, there-
fore no orthorectification was required. The
images were not affected significantly by distor-
tion (barrel or pincushion). Therefore, the

spatial resolution of the image (unit length/
pixel) was taken to be constant over the entire
image. All values are reported in pixels, but unit
length is obtained by multiplying by a spatial
resolution (length/pixel). If, however, distortion
is present and/or images were not taken parallel
to the surface, the image would have to be
corrected and/or orthorectified prior to use.

RESULTS

Images of natural sands and gravels (large
sample size: set A)

Six commonly utilized percentiles of the cumu-
lative size distribution (namely 10, 16, 25, 50, 75

Fig. 5. Square portions of images of nine petrographic thin sections (set B), along with their known particle size
distributions (continuous lines) and estimated size distributions (dashed lines). In each subplot, the horizontal
axis is grain size in pixels and the vertical axis is proportion less than. Error statistics for these samples are
presented in Table 4.
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and 84) were calculated for each measured and
estimated size distribution. The agreement for
each percentile, quantified by w values between
14% and 37%, is very good (Fig. 7) and mean
sizes are comparable to the previous method of
Buscombe et al. (2010). Error statistics per per-
centile are summarized in Table 4. There is a
slight negative bias up to the 50th percentile
where the algorithm consistently slightly under-
estimates grain size. This is probably due to the
algorithm being more sensitive to few numbers
of the smallest grains than few numbers of the
largest grains, which would perhaps explain

why the bias decreases with percentile. Such
bias can be corrected for, for a given population,
by carrying out point counts on images of a few
end members of the grain-size spectrum for that
population (see Buscombe et al., 2010). The
same error metrics have been computed for the
10th, 50th and 84th percentile results of Bus-
combe (2008), a Fourier-based spectral method
for grain-size distribution estimates (Table 5).
Errors using that method are larger than the pres-
ent method (Table 4) for the coarse percentiles,
and comparable for the fine and median
percentiles. The method of Buscombe (2008)

Fig. 7. Measured (horizontal axes) versus estimated (vertical axes) grain-size distribution percentiles from the
samples in set A (Fig. 4). Subplots from left to right and top to bottom are the 10th, 16th, 25th, 50th, 75th and
84th percentiles. In each subplot, the dashed line is the 1:1 relation and the solid line is the linear least squares
fit. The slopes of those lines (b) and the normalized root mean square error (w) are shown for each percentile.
Error statistics for these samples are presented in Table 5.

Table 4. Error in aggregated percentile estimates for set A. Units are pixels. Values in parentheses have been nor-
malized by the mean particle size associated with that percentile and multiplied by 100 to give a percent error.

Percentile P10 P16 P25 P50 P75 P84

Ψ 15�77 (37%) 15�17 (32%) 14�86 (28%) 10�77 (16%) 11�92 (14%) 18�61 (19%)
M 12�49 (29%) 11�71 (25%) 10�58 (19%) 7�20 (11%) 8�46 (10%) 12�36 (13%)
ei 9�61 (22%) 9�64 (20%) 10�43 (19%) 8�01 (11%) 8�39 (9%) 13�92 (14%)
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requires calibration for each site/sediment type
and was validated using only one sedimentologi-
cal population (well-sorted fine gravels).

Thin section images of sedimentary rocks
(set B)

Figure 5 shows grey-scale images of the nine
example petrographic thin sections of consoli-
dated sediments with apparent pore space, along

with their measured (solid lines) and estimated
(dashed lines) size distributions. The agreement
between measured and estimated distribution
percentiles (Fig. 8) is good, with w ranging
between 9�5% and 28%. The errors are, as
expected, largest for the percentiles near the
tails of the distributions owing to the relatively
small sample numbers. Error statistics per per-
centile are summarized in Table 6. In this case,
computed biases are very small for all percen-
tiles, probably owing to the very low level of
small-wavelength noise in the sample images.

Images of natural sediments (small sample
size: set C)

Analysis using images from set C, which all
have few numbers of grains (tens to hundreds),
reveals that RMS error is found to go approxi-
mately inversely with sample size (number of
grains per image), for all percentiles of the dis-
tribution. Some examples of images within set C
with larger numbers of grains (more than 200)
are shown in Fig. 9 along with measured (solid)

Table 5. Error in aggregated 10th, 50th and 84th per-
centile estimates obtained by Buscombe (2008) for a
similar method which relied on calibration, based on
one population analysed. Units are millimetres. Val-
ues in parentheses have been normalized by the mean
particle size associated with that percentile and mul-
tiplied by 100 to give a percent error.

Percentile P10 P50 P84

Ψ 0�40 (25%) 0�45 (17%) 2�40 (35%)
M 0�28 (17%) 0�39 (15%) 1�98 (29%)
ei 0�28 (18%) 0�23 (9%) 1�37 (20%)

Fig. 8. Measured (horizontal axes) versus estimated (vertical axes) grain-size distribution percentiles from the
samples in set B (Fig. 5). Subplots from left to right and top to bottom are the 10th, 16th, 25th, 50th, 75th and
84th percentiles. In each subplot, the dashed line is the 1:1 relation and the solid line is the linear least squares
fit. The slopes of those lines (b) and the normalized root mean square error (w) are shown for each percentile.
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and estimated (dashed) cumulative grain-size
curves. These samples have RMS errors of less
than 50% for all percentiles computed.
Figure 10, in contrast, depicts some sample
images where the wavelet method yielded par-
ticularly poor estimates. These include samples
with very few numbers of grains (for example,

top middle and bottom right), and also examples
where the intensity variations between grains is
limited (top left, bottom middle), which also
yields relatively poor predictions. Together,
Figs 9 and 10 serve to visually illustrate the skill
and limits of the new method in terms of sample
size and sedimentological variability.

Fig. 9. Square portions of nine of the samples depicted in Fig. 6, along with their known particle size distribu-
tions (continuous lines) and estimated size distributions (dashed lines). In each subplot, the horizontal axis is
grain size in pixels and the vertical axis is proportion less than. These are examples where the grain-size algo-
rithm has worked well, despite the small number of individual grains.

Table 6. Error in aggregated percentile estimates for set B. Units are pixels. Values in parentheses have been nor-
malized by the mean particle size associated with that percentile and multiplied by 100 to give a percent error.

Percentile P10 P16 P25 P50 P75 P84

Ψ 6�84 (28%) 6�13 (21%) 5�59 (16%) 4�67 (9�5%) 8�49 (13%) 13�02 (17%)
M 5�58 (23%) 4�92 (16%) 4�38 (12%) 4�02 (8%) 5�89 (9%) 9�03 (11%)
ei 3�96 (16%) 3�65 (12%) 3�47 (9%) 2�38 (5%) 6�11 (9%) 9�38 (12%)
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Images of sedimentary cores

This approach could also be useful for images of
cores through deposits. Often sediment cores
show considerably greater sedimentological vari-
ability than a given sample of a sedimentary
rock or unconsolidated sediment accessible from
the surface. However, the narrowness of cores
could limit use of the methods of Buscombe
et al. (2010) or Buscombe & Rubin (2012b)
because of the small sample size. The new
method was applied to a number of high-resolu-
tion scans of cores taken as part of the Integrated
Ocean Drilling Program (Mountain et al., 2010a,
b). The global wavelet power spectrum was cal-
culated for each line down the length of the
image. For illustration, two example cores and

128-row moving averages of the vertical varia-
tion in l and r are shown in Fig. 11A and B.
There is redundancy of information in such an
approach, and a moving average could smooth
over important grain-size transitions. However,
for the present purpose, it clearly demonstrates
the changes in core texture discernible by eye,
and the reported grain sizes are in accord with
visual estimates.

Images of non-sedimentary materials

The method is also suitable for other (non-sedi-
mentary) natural patterns which are ‘granular’ or
composed of tessellating elements which possess
a distribution of sizes. For example, Eq. 4 was
computed for images of: (i) polygonal patterned

Fig. 10. Square portions of nine of the samples depicted in Figure 6, along with their known particle size distri-
butions (continuous lines) and estimated size distributions (dashed lines). In each subplot, the horizontal axis is
grain size in pixels and the vertical axis is proportion less than. These are examples where the grain-size algo-
rithm has not worked well (the reasons for which are discussed in the text).
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ground (Fig. 12A to C); (ii) a type of granular sea
ice called ‘pancake ice’ (Fig. 12D to F); and (iii)
dried and cracked earth (Fig. 12G to I). In each
of these images, the pattern depicted possesses a
bi-modal or multi-modal element size distribu-
tion. For each image, the global wavelet power
spectrum shows clear peaks associated with the
wavelengths of features visible by eye.

SENSITIVITY ANALYSES

This section further explores the sensitivities
and limitations of the wavelet technique using
plan-form simulations of sediments. Simulated
sediments have been shown by Buscombe et al.
(2010) and Buscombe & Rubin (2012b) to be an

adequate means by which to explore the sensiti-
vities of automated grain-size algorithms, allow-
ing the control of some sediment attributes
whilst testing for others. The effects of preferred
grain orientation, and correlation with grain
shade (colour) and size are explored.

Effect of anisotropy

Natural sediments are sometimes found with a
preferred orientation, particularly those worked
by unidirectional flows of water and/or ice
where the long axis points in the direction of
the flow. Many examples can be found in
glacial tills and imbricated river and beach grav-
els, and many more in the sedimentary record.
It is even possible that images of sediment
which resolve individual grains might cover
sufficient area for the preferential orientation of
grains to be both evident and significantly affect
grain-size estimates using statistical techniques
such as here.
The effect of anisotropy on the algorithm was

tested using simulated images consisting of
binary ellipses at a preferred orientation. The
ellipses were log-normally distributed (l = 1,
r = 1) and each had a longest axis twice the
length of the shortest axis. Simulations were
performed in which grains were oriented 0°, 45°
and 315° to the top of the image (respectively,
pointing up, towards the top right or towards
the top left). The resulting set of images has
near-identical grain-size distributions and void
fractions. Only the grain orientation differs
between images. The method given by Eq. 4 was
applied, as before, using a selection (approxi-
mately half) of rows and columns from each of
the images. As illustrated by Fig. 13, which
shows the measured and estimated grain-size
distributions overlying the respective simulated
images, the orientation of the grains had no sig-
nificant impact on the grain-size estimates.

Effect of correlation of grain colour and scale

In natural sediment samples, there can be a cor-
relation of grain colour and grain size. Such sit-
uations can arise in a mature sediment, for
example, if grains of different mineralogies
weather and abrade at different rates, or if the
sediment is a mixture of populations of grains
with different maturities brought together by
mixed transport processes. If grain size and
shading intensity were positively correlated
(larger grains were systematically brighter) one

A B

Fig. 11. (A) Left: scan of a 75 cm section of core
014H from expedition 313, site 27, hole A. (B) Left:
Scan of a 148 cm section of core 161R from expedi-
tion 313, site 28, hole A. Grain-size arithmetic mean
(l, dark lines) and standard deviation (r, light lines)
have been computed per line of pixels and then
smoothed using a 128-row moving average to discern
the trend.
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might hypothesize that the effect on the wavelet
method would be, in general, to over-estimate
grain size because greater spectral power would
be associated with the larger wavelengths in the
image. If larger grains were systematically dar-
ker one might expect the opposite situation to
be true. To investigate how sensitive the tech-
nique is to a correlation between grain shade
and size, simulations were used where such a
correlation could be artificially imposed and
varied.
Simulated sediments composed of randomly

oriented log-normally distributed ellipses (where
the major axis was exactly twice the minor axis)
were once again used. Two sets of images with
identical geometric structure were generated.
Each set varied the void fraction but the particle

size distribution remained constant. In the first
set, each grain was shaded randomly so particle
size and shade were uncorrelated. In the second
set of images, particles were shaded according to
eight discrete size classes based on the cumula-
tive size distribution C(d) [namely, C(d) � 0�05,
0�05 < C(d) � 0�1, 0�1 < C(d) � 0�25, 0�25 < C
(d) � 0�5, 0�5 < C(d) � 0�75, 0�75 < C(d) � 0�9,
0�9 < C(d) � 0�95 and C(d) > 0�95]. Importantly,
shading intensity (brightness) increased
linearly with these grain-size bins. Grain-size
distributions were estimated for both sets of
images, once again using Eq. 4.
Results for end-member porosities in both sets

are shown in Fig. 14: on the left is the sediment
image with grains randomly shaded and on the
left is the shade correlated with size. As in

A B C

D E F

G H I

Fig. 12. Images of some naturally occurring non-sedimentary granular patterns: (A) polygonal patterned ground
on Mars (NASA/JPL/University of Arizona: Image ESP_016641_2500, RGB non-map projected image); (D) pancake
ice; and (G) cracked earth. The portions of the image in each of the boxes are shown in (B), (E) and (H), respec-
tively. The line lengths in each of these close-ups correspond to the scales marked by the vertical dashed lines in
the corresponding global wavelet spectra of the images in (A), (D) and (G), shown in (C), (F) and (I), respectively.
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previous figures, the solid and dashed lines are,
respectively, measured and estimated cumula-
tive particle size distributions. Table 7 contains
a full summary of errors for both sets of images.
As expected, having a situation where grain size
and shade are correlated clearly introduces
greater error for all percentiles of the size distri-
bution. The general effect is to cause over-
prediction of grain size, because grain size and
intensity were positively correlated. The irre-
ducible random errors are similar, however,
because most of the RMS error in the cases
where particle shade and size are correlated is
caused by a bias, whereby grain sizes are consis-
tently over-predicted.

DISCUSSION

The present algorithm takes a representative
number of rows and columns from each image,
computes the global wavelet spectrum from
each, then averages the global spectrum from
each to provide the grain-size distribution. It is
important that both rows and columns are used
to mitigate potential issues with grain aniso-
tropy. In the present study, every second or third
row and column were used, and the results were
satisfactory. However, what constitutes a ‘repre-
sentative’ number is yet to be defined precisely.
Qualitatively, it would be the point where the
new information of an additional row or column

Fig. 13. Simulated two-phase media (shaded areas are particles, black areas are void spaces) consisting of ellipses
(the major axis is always twice the minor axis length) with a preferred orientation, along with their known parti-
cle size distributions (continuous lines) and estimated size distributions (dashed lines). In each subplot, the hori-
zontal axis is grain size in pixels and the vertical axis is proportion less than. The title of each subplot is the void
fraction of the simulation underneath.

Table 7. Percent error in aggregated percentile estimates for idealized log-normally distributed ellipses. Values
have been normalized by the particle size associated with that percentile and multiplied by 100 to give a percent
error. Values outside of parentheses are for grains randomly shaded. Values inside parentheses are for grains
shaded according to their size.

Percentile P10 P16 P25 P50 P75 P84

Ψ 29 (73) 29 (71) 29 (69) 23 (55) 11 (28) 9 (16)
M 25 (71) 26 (70) 26 (68) 20 (53) 9 (25) 8 (12)
ei 14 (12) 13 (12) 12 (13) 11 (14) 5 (12) 5 (9)
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of data either does not significantly change the
overall size distribution, and/or does not
improve the observation–estimation mismatch.
Clearly, further work would be required to ascer-
tain this. Subsequent research would be required
to ascertain what minimum sample density is
required for a given level of accuracy in the
grain-size estimate. This would depend on many
factors, such as the degree of homogeneity in the
image, any correlation between grain size and
shading intensity, and even possible grain shape
effects which have not been explored here.
This new wavelet technique deals much better

with non-stationarity (non-homogeneous images)
compared to previous techniques based on
the Fourier-derived spectrum (Buscombe et al.,
2010; Buscombe & Rubin, 2012b), as evidenced
by the skill of the method for the samples with
very few individual grains (set C; Fig. 9) and the

two-phase (binary) simulations which also con-
tain relatively few grains (Figs 2, 3, 13 and 14).
Fourier-derived spectra of sediment images (for
example, Fig. 1E) do not possess sharp peaks at
discrete frequencies because a range of frequen-
cies is required to describe the quasi-periodic,
non-sinusoidal features in the data (for example,
Fig. 1B). Wavelet spectra of the same images
often possess an even greater spectral smooth-
ness, due in part to the number of peaks of the
mother wavelet in the spatial domain [here, the
Morlet mother wavelet used has six peaks in the
spatial domain – see Torrence & Compo (1998)]
and also the averaging of both spectral and spa-
tial components of the signal.
The difference between the ‘geometrical’ and

‘statistical’ approach to grain size from images of
sediment is essentially the same as the Nikora &
Goring (2004) classification of quantitative

Fig. 14. Simulated two-phase media (shaded areas are particles, black areas are void spaces) consisting of ran-
domly oriented ellipses with a log-normal size distribution, along with their known particle size distributions
(continuous lines) and estimated size distributions (dashed lines). In each subplot, the horizontal axis is grain size
in pixels and the vertical axis is proportion less than. The title of each subplot is the void fraction of the simula-
tion underneath. The pair of images on each row shows the same sediment bed with different shading of particles.
In the left subplot, the grains are shaded randomly (no correlation between shade and size), whereas in the right
subplot, the grains are shaded according to their size (shading and size are correlated). Error statistics for these
samples are presented in Table 7.
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characterization of surface topography into ‘dis-
crete’ and ‘continuous’. The discrete approach
identifies individual morphological features,
such as ridges, valleys, craters and dunes, based
on their geometries, whereas the continuous
approach quantifies the salient statistical features
of the surface using spectra (e.g. Taylor Perron
et al., 2008) and other statistical measures (vario-
grams and structure functions) on both grain-
scale (e.g. Aberle & Nikora, 2006; Brassington
et al., 2012) and landscape-scale (e.g. Dodds &
Rothman, 2000; Stepinski et al., 2002; Nikora &
Goring, 2004; Taylor Perron et al., 2008) topo-
graphic data sets. The same classification might
be used for sediment surfaces, and indeed the
techniques employed are similar because both
images of sediment and digital elevation models
of landscapes are continuous random surfaces (of
intensity or elevation, respectively).
The continuous wavelet transform provides a

powerful means by which to quantify multiple
scales of persistence/autocorrelation from con-
tinuous random fields. Highlighting once again
the close parallels to statistical characterization
of topographic data sets, in combining the bene-
fits of statistical and deterministic approaches,
wavelet transforms have been used to characte-
rize surface elevations at a range of scales and
environments (e.g. Little et al., 1993; Malamud
& Turcotte, 2001; Lashermes et al., 2007). Satel-
lite imagery and topographic data sets from
LIDAR and multi-beam acoustics might, in the
future, provide the required coverage and spatial
resolution so that scales from the individual
grain to bedform to interfluve might be uncov-
ered with a single analysis technique. The
continuous wavelet transform would be a good
candidate for such a multi-scalar scale analysis,

especially useful in situations where it is advan-
tageous to relax the strict stationarity require-
ment of Fourier-based methods, and where both
spectral and spatial information is important.
As with all previous methods for grain-size

analysis from images of sediment surfaces
(both statistical and geometrical), what is actu-
ally quantified is the size of apparent axes of
grains. In other words, in the image plane where
many grains may be overlapping and therefore
their axial dimensions are partially obscured. In
some situations, this is precisely the information
which is required, for example in studies of
hydrodynamics and sediment transport because
it is this top surface which is interacting with the
flow in the form of surface roughness, and seed-
ing the flow with suspended sediments. In other
situations, the apparent grain-size distribution
needs to be converted to a bulk sample size dis-
tribution. The reader is referred to Kellerhals &
Bray (1971) and Graham et al. (2010, 2012) for a
comprehensive review of these phenomena, as
well as conversion procedures which are
applicable for grain-size distribution measure-
ments from geometrical algorithms such as
Graham et al. (2005).
In the present technique [indeed by the defini-

tion of Buscombe et al. (2010) all ‘statistical’
techniques] the grain size is inferred indirectly,
without measuring individual grains. This offers
distinct advantages over geometrical approaches,
for example it means that it is not subject to the
accumulation or errors associated with over-
segmenting and under-segmenting grains, which
means the same algorithm can be applied across
the sedimentary size-spectrum as long as the
grains are resolved. The main disadvantage,
however, is that whereas in the geometrical

A B C

Fig. 15. Root mean square (RMS) % error versus number of individual grains per image for the: (A) 10th, (B) 50th
and (C) 84th percentiles of the grain-size distributions. Images come from sets A (Figure 4) and C (Figure 6). As a
rule of thumb, a sample size of at least 250 grains per image is required to achieve a RMS error of around 20% or
less.
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approach, the images can be used to obtain
many metrics of grain sizes (including major
and minor axes, equivalent circular diameters,
etc.), in the present method, the reported grain
size is equivalent to the distribution of interme-
diate apparent axis diameters, and this is the
only grain-size metric obtained by the analyses
of the present paper (although there should be
no theoretical limits on what other measures of
grain size are obtained by similar analyses). Dif-
ferent physical and ecological applications of
grain-size data require different measures of
‘size’, which will remain a potential limitation
of the statistical approach until modifications or
suitable conversions are developed.

SOME PRACTICAL GUIDELINES WHEN
USING THIS METHOD

Analysis of sets A and C revealed that root mean
square (RMS) error is found to go inversely with
sample size (number of grains per image), for all
percentiles of the distribution (Fig. 15). There-
fore, sampling strategies should be designed
such that the area of the photograph is maxi-
mized without having a deleterious effect on
resolution, to maximize the number of grains
within the image.
The errors presented in this manuscript are

those of the estimate versus a point count from
the same image. Errors are likely to be different
when compared to another form of particle size
analysis, such as sieving or laser diffraction (Bar-
nard et al., 2007; Warrick et al., 2009). In such
cases, a correction must be applied, which will
most probably depend on the nature of the sedi-
mentological population. Errors might be further
reduced if multiple samples are taken and the
results averaged (Barnard et al., 2007; Gallagher
et al., 2011). Some recommendations for suitable
sediment imagery have already been made by
others (Rubin et al., 2007; Warrick et al., 2009;
Buscombe et al., 2010; Baptista et al., 2012), so
only the most important guidelines for taking
suitable sediment imagery will be repeated here.
The ‘golden rule’ is that the individual grains are
resolvable by eye. If the smallest grains are less
than a few pixels in scale, the present method,
or the methods of Rubin (2004), Warrick et al.
(2009), Buscombe et al. (2010) or Buscombe &
Rubin (2012b), will not work. In the case of sub-
pixel imagery, the reader is referred to the tech-
niques of Carbonneau et al. (2004, 2005), Verdu
et al. (2005) and Dugdale et al. (2010) which are

designed for under-resolved imagery (for exam-
ple, from aerial and satellite platforms).
Ideally, the image should be of the sediment

surface in planform so no orthorectification is
required, and ideally the image should not con-
tain non-sedimentary material, such as vegetation
and other organic matter larger than the grain
scale. If such material is present, if the image
covers a sufficient area, it can be sub-sampled
(cropped) so as to avoid non-sedimentary mate-
rial and the analyses performed on each sub-sam-
ple. For guidelines concerning large shadows and
partially wet sediment, the reader is referred to,
respectively, Buscombe et al. (2010) and Warrick
et al. (2009) for some guidance.
As shown above, the method is relatively

insensitive to grain orientation (Fig. 13), yet sen-
sitive to situations where grain shade is corre-
lated with grain size (Fig. 14), so care should be
taken in such circumstances to correct for the
bias that this introduces. It has also been shown
that errors increase if insufficient numbers of
grains are present. At least a few hundred grains
must be present for a reliable grain-size estimate,
and preferably thousands (providing that the
grains are well-resolved), particularly if the sedi-
ment is not well-sorted. In general, if there is a
compromise to be made between the typical
number of grains in the image and grain resolu-
tion, a rule of thumb is that it is almost always
preferable to have fewer well-resolved grains
than lots of under-resolved grains.
The colour information in the image is not

used by the method, only grey-scale (8-bit)
intensities. In most of the sediment images col-
lected by the author, in a wide range of sedi-
ment environments, there is almost always a
sufficiently wide range of grain shades in inten-
sity images. If, however, all the grains have very
similar intensities in a grey-scale image, such as
in images of coral sands or volcanic glass sands,
this can potentially lead to problems, and an
imaging capability which yields a larger contrast
must be sought. A couple of such images are
shown in Fig. 10 (top left and middle bottom)
for reference.

CONCLUSIONS

Previously described automated methods for
estimating the grain-size distribution from an
image of sedimentary material rely on either:
complicated image processing (segmentation of
individual grains; e.g. Chang & Chung, 2012);
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calibration (e.g. Rubin, 2004; Warrick et al.,
2009); relatively well-sorted samples; or a
relatively large number of grains (e.g. Buscombe
et al., 2010; Buscombe & Rubin, 2012b). Here, a
method is proposed which circumnavigates
these issues. The complete size distribution of
apparent grain axes in an image of sediment is
well-approximated by the global wavelet power
spectrum. The grain-size distribution obtained is
equivalent to the distribution of apparent inter-
mediate grain diameters, grid by number style.
No image filtering or other processing is
required. A sample size of around 250 grains per
image is required to achieve a root mean square
error of around 20% or less. This compares to
more than approximately 1000 grains per image
for the same level of accuracy for a similar
method based on the Fourier-derived spectrum
(Buscombe et al., 2010).
This new method was tested using 300 images

from 46 populations of unconsolidated sands
and gravels from diverse sedimentary environ-
ments, nine thin sections through different sedi-
mentary rock types, long marine sediment cores
and other types of natural patterns composed of
tessellating elements. The test suite of images
therefore displayed considerable variability in
origin (biogenic and mineral), size (uni-modal,
bi-modal and multi-modal distributions), surface
texture and shape. This approach is the first
statistical algorithm which provides completely
automated, highly accurate grain-size distribu-
tions from images of sediment, and which is
transferable, in unmodified form, for both con-
solidated and unconsolidated surface sediments
and also some non-sedimentary material. It is
suggested that the robustness of the new method
is because it efficiently uses both spectral and
spatial information from the image, rather than
discarding one or the other like previous image-
based grain-size techniques. Similar wavelet
methods may have applicability for spatial-scale
analysis of other continuous random fields in
sedimentology, such as topographic data sets.
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