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Abstract 6 

I describe a configurable machine-learning framework to estimate a suite of continuous and 7 

categorical sedimentological properties from photographic imagery of sediment, and to 8 

exemplify how machine learning can be a powerful and flexible tool for automated quantitative 9 

and qualitative measurements from remotely sensed imagery. The model is tested on a 10 

dataset consisting of 409 images and associated detailed label data. The data are from a 11 

much wider sedimentological spectrum than previous optical granulometry studies, 12 

consisting of both well- and poorly sorted sediment, terrigenous, carbonate, and 13 

volcaniclastic sands and gravels and their mixtures, and grain sizes spanning over two orders 14 

of magnitude. I demonstrate the model framework by configuring it in several ways, to 15 

estimate two categories (describing grain shape and population, respectively) and nine 16 

numeric grain-size percentiles in pixels from a single input image. Grain size is then 17 

recovered using the physical size of a pixel. Finally, I demonstrate that the model can be 18 

configured and trained to estimate equivalent sieve diameters directly from image features, 19 

without the need for area-to-mass conversion formulas and without even knowing the scale 20 

of one pixel. Thus, it is the only optical granulometry method proposed to date that does not 21 

necessarily require image scaling. The flexibility of the model framework should facilitate 22 

numerous application in the spatio-temporal monitoring of the grain size distribution, shape, 23 

mineralogy and other quantities of interest, of sedimentary deposits as they evolve as well 24 

as other texture-based proxies extracted from remotely sensed imagery. 25 



 26 

1. Introduction 27 

Sediment grain size fundamentally influences the physics of flows of water, wind, ice and 28 

sediment that continually shape landforms. Large sedimentological datasets have led to 29 

important discoveries in dynamic environments such as contemporary river beds, sea beds 30 

and aeolian sediment surfaces that are constantly changing under fluid power, for example 31 

in sediment transport (e.g. Masteller & Finnegan, 2017; Rubin et al., 2019), channel bed 32 

mobility (e.g. Montgomery et al., 1999), channel geometry (e.g. Pfeiffer et al., 2017), sediment 33 

provenance (e.g. Paterson & Heslop, 2015), sediment abrasion (e.g. Novak-Szabo et al., 34 

2018), hydraulic resistance (e.g. Rickenmann & Recking, 2011), particle settling (e.g. 35 

Sternberg et al., 1999) and dispersal at coasts (e.g. Wheatcroft & Borgeld, 2000), and beach 36 

dynamics (e.g. Bergillos et al., 2016).  Traditionally, the means of acquiring large grain size 37 

(or shape, or any other metric) data sets has been laborious and time-consuming through 38 

laboratory analyses of samples taken in the field. Optical granulometry is the measurement 39 

of sediment from statistical analysis of image intensity and texture, and has been driven by 40 

instrumental (e.g. Buscombe et al., 2014; Carbonneau et al., 2018; Rubin et al., 2007; 41 

Woodget et al., 2018) and analytical (e.g. Black et al., 2014; Buscombe et al., 2010; 42 

Buscombe and Rubin, 2012b; Buscombe, 2013; Cheng and Liu, 2015; Carbonneau et al., 43 

2005a, 2005b; Carbonneau et al., 2004; Cuttler et al., 2017; Dugdale et al., 2010; Legleiter 44 

et al., 2016; Rubin, 2004; Woodget et al., 2017) developments over the past 15 years. 45 

Another set of deterministic methods known as `photosieving’ (e.g. Adams, 1979) or object-46 

based image analysis or OBIA (Carbonneau et al., 2018) have been developed (e.g. Detert 47 

and Weitbrecht, 2012; Graham et al., 2005) that aim to identify each individual grain and 48 

cannot therefore be used on grains smaller than one pixel (subpixel) which is not a theoretical 49 

limitation of optical granulometry techniques that statistically quantify image texture 50 



(Carbonneau et al., 2004). One major goal of this corpus of work is to develop a reliable suite 51 

of techniques for spatio-temporal monitoring of the grain size of sedimentary deposits as they 52 

evolve, remotely and automatically. This has the potential to significantly alter the way 53 

geomorphological research is carried out (e.g. Viles, 2016) and may hopefully lead to 54 

significant discoveries in the two-way feedbacks between evolving sedimentary landform 55 

morphologies and the spatio-temporal dynamics of grain size, or ‘morpho-sedimentary 56 

dynamics’ (cf. Buscombe and Masselink, 2006), at large field scales. This will require 57 

measuring grain size at the same spatial (e.g. Rubin et al., 2019) and temporal (e.g. 58 

Buscombe et al., 2014) coverage as is now possible with topographic measurements that 59 

can capture the spatio-temporal evolution of small-scale morphologies (e.g. Austin et al., 60 

2007; Nield et al., 2011; Turner et al., 2008; Williams et al., 2014). 61 

 62 

The present study is motivated by five observations. First, the wavelet-based optical 63 

granulometry method of Buscombe (2013), while accurate for relatively well-sorted sediment 64 

(e.g. Masteller and Finnegan, 2017; Michaelides et al., 2018; Prodger et al., 2016; Smith et 65 

al., 2018), can be inaccurate for images of grains that are poorly sorted such as sand and 66 

gravel mixtures, or where there are relatively few individual grains in the image (hundreds to 67 

thousands of grains are typically required). For this study, I have collated a dataset of more 68 

than 100 images of sediment that mostly fall under these two categories, to augment the 300-69 

image dataset used by Buscombe (2013) that contained a greater proportion of relatively 70 

well-sorted sediment, in order to develop a more generally applicable method. Some images 71 

contain as few as 10 individual grains, whereas others depict millions of individual grains. 72 

 73 

Second, optical granulometry methods quantify the size of apparent axes of grains in the 74 

image plane, where many grains may be overlapping. If a bulk (i.e. by mass or by volume) 75 



sample size distribution is the information required, the Buscombe (2013) or similar method 76 

can provide comparable grain size distributions to those derived using sieves or similar 77 

methods usually only if the appropriate conversion of area- to mass-by-size is made, which 78 

takes the form (Diplas and Sutherland, 1988; Kellerhals and Bray, 1971):  79 

𝑝(𝑉 − 𝑊)𝑖 =  
𝑝(𝐴)𝑖𝐷𝑖

𝑥

∑ 𝑝(𝐴)𝑖𝐷𝑖
𝑥    (1) 80 

where 𝑝(𝑉 − 𝑊)𝑖 is the volume by weight proportion of the ith size fraction, 𝑝(𝐴)𝑖is the image-81 

derived areal proportion of the ith size fraction, 𝐷𝑖 is the grain size of the ith size fraction and 82 

x is a conversion constant. See also Graham et al., (2012) for field applications of this 83 

conversion. Diplas and Fripp (1992) suggest that it is necessary to use different values for 84 

exponent x depending on grain size, but Diplas et al. (2008) suggest a pragmatic approach 85 

is to use an average value for x, which is determined empirically for each population of grains 86 

imaged. Cuttler et al. (2017) confirmed that x must be determined empirically for bioclastic 87 

carbonate sediment to avoid over-predicting sieve sizes and sediment settling velocities from 88 

parametric formulas, even though the Buscombe (2013) method worked well to estimate the 89 

apparent axes of grains from the imagery. Here, I demonstrate that machine learning can be 90 

used to map image features to sieve sizes directly, without the need for conversion formulas 91 

and without even knowing the scale of a pixel. 92 

The third motivation for this study is provided by Shojiet et al. (2018) who demonstrated the 93 

utility of deep learning techniques to classify volcanic ash particles by shape, and specifically 94 

that a well-designed deep convolutional neural network (CNN) can automatically extract the 95 

relevant features from imagery of particles to estimate a categorical quantity. Here, that work 96 

is extended by demonstrating that the same CNN architecture can be used for both discrete 97 

(classification) and continuously varying quantities (regression) from a single image, by 98 

estimating categorical particle shape and population, and numerical percentiles of the grain 99 



size distribution. CNNs are a type of artificial neural network (ANN) and part of a class of 100 

machine learning techniques called deep learning (Goodfellow et al., 2016) that have recently 101 

been shown to perform well for both classification and regression tasks equally, including in 102 

numerous geosciences applications where relevant image features are extracted 103 

automatically (e.g. Buscombe and Carini, 2019; Buscombe et al., 2019; Buscombe and 104 

Ritchie, 2018; Linville et al. 2019; Luo et al., 2018; Jiang et al., 2018; Reichstein et al., 2019). 105 

The basic premise of applications such as these, compared to those of other machine 106 

learning subcategories, is that it circumvents the need (and the effort required) to make 107 

decisions about what extracted image features are important to a specific task, which tends 108 

to make the models both more subjective and more powerful.  109 

 110 

The fourth motivation is that predictive modeling techniques for both categorical and 111 

numerical output quantities in the geosciences is somewhat rare. Categorical variables are 112 

those that are ascribed an integer, but where the values themselves do not have a physical 113 

meaning as they simply enumerate the possible realizations of a phenomenon. As such, they 114 

are limited by our ability to identify and ascribe meaning to the phenomenon, and also as 115 

intra-categorical variation approaches inter-categorical variation. However, for trivial, well-116 

known or unambiguously defined quantities, they are an essential part of the geosciences, 117 

but whereas some techniques are designed for handling continuous estimates, others are 118 

better for handling categorical or discrete variables. This typically requires the development 119 

of transforms that convert continuous to categorical (using discretization, dummy variables, 120 

etc.), which can be subjective if thresholds or discrete bins need to be defined. Here I describe 121 

a single empirical framework that can be trained to predict both categorical and continuous 122 

quantities, as needed, which might be useful in other geophysical contexts. Within the 123 

framework of an ANN, this is relatively straightforward: essentially, multinomial logistic 124 



regression is used for image features that have been distilled by a CNN to estimate discrete 125 

variables (such as categorical grain shape), and linear regression for continuous variables 126 

(such as grain size). For the latter, the key to the framework is to provide the image features 127 

that scale linearly with the response variable (e.g. grain size) being estimated. Highlighting 128 

this relatively simple principle through demonstration is worthwhile if it motivates similar 129 

progress in other geophysical contexts. 130 

 131 

The final and perhaps foremost motivation to developing yet another optical granulometry 132 

technique is the observation that the data-hungry nature of machine learning allows for 133 

collaborative tool development for extracting scientific information from images of sediment. 134 

Recognizing the variety of both sediment imagery, due to the inherent variability of natural 135 

sediment, and potential SediNet applications, the motivating idea behind the creation of the 136 

SediNet model and software (SediNet online software, 2019) is to foster the creation of such 137 

a community. As explained further in Section 5.4, users can contribute imagery, models, and 138 

retrain existing models, as well as using existing SediNet models contained in the repository.  139 

 140 

2. Data 141 

The model is trained and tested on a large data set consisting of 409 labeled images of 142 

sediment (Figures 1 and 2), with a large variation in the spatial footprint (field-of-view) of each 143 

image, the spatial resolution (physical size of a pixel), and variation in camera sensor. The 144 

data are from a wide sedimentological spectrum of well and poorly sorted sediment, 145 

consisting of terrigenous (derived by erosion of crystalline, volcanic, and sedimentary rocks), 146 

carbonate (skeletal grains, oolites, and some locally derived detrital carbonate), and 147 

volcaniclastic (lapilli, glass, and pyroclastic bombs) sands and gravels and their mixtures, 148 

and grain sizes in pixels spanning over two orders of magnitude. Out of the 409 images, 300 149 



were compiled and used by Buscombe (2013) to develop a wavelet-based algorithm for 150 

estimating grain size from imagery (sets A and C in that paper). The remaining 109 samples 151 

were compiled for this study, from various fieldwork activities over more than 10 years in 152 

various coastal and riverine environments on several continents. The additional 100 samples 153 

were chosen specifically to better represent within the dataset both poorly sorted mixed sand 154 

and gravel sediment and (usually microscopic) imagery with relatively few numbers of grains. 155 

 156 

2.1. Grain Size 157 

The size distribution of intermediate axes of apparent (surface) grains was compiled for each 158 

image following the on-screen manual method of Barnard et al. (2007), which is the only way 159 

in which to reliably obtain a comparable grain-size distribution to that provided by image-160 

based methods (Baptista et al., 2012; Buscombe et al., 2010; Cuttler et al., 2017). However, 161 

it is a time-consuming and meticulous process, usually taking a trained operator 30-60 162 

minutes per image to measure the axes of up to 500 grains. Nine commonly utilized 163 

percentiles of the cumulative size distribution (namely 5, 10, 16, 25, 50, 75, 84, 90, and 95th 164 

percentiles) were calculated for each measured size distribution. 165 

 166 

2.2. Grain shape and population 167 

The expanded dataset of 409 images contain a number of sediment populations (Figure 1) 168 

that I manually grouped into six categories: 1) well-sorted gravel; 2) well-sorted sand and 169 

shell hash from underwater camera (described in Buscombe et al., 2014); 3) relatively poorly 170 

sorted gravel and sand-gravel mixtures (including imagery from Warrick et al., 2009); 4) well-171 

sorted sand; 5) miscellaneous terrigenous and volcaniclastic grains; and 6) miscellaneous 172 

bioclastic (carbonate) grains. Additionally, each of the 409 images were classified into four 173 



shape/size categories (Figure 2), namely 1) large well-rounded grains; 2) small well-rounded 174 

grains; 3) large angular grains; and 4) small angular grains. 175 

 176 

Discrete classification schemes are subjective and the purpose is to train a machine to 177 

replicate or simulate expert judgement, as is the case here. I classified the shape and 178 

population of each image by eye. This was a relatively straightforward and objective for grain 179 

population, since populations 5 (terrigenous/volcaniclastic) and 6 (bioclastic) were the two 180 

largest groups when different clastic groupings (sand versus gravel) could be made. 181 

Populations 5 and 6 are obviously distinct because the latter are invariably white or near 182 

white, and almost all with regular rather than irregular shapes. Of the various sand and gravel 183 

groupings (two of each), the sand populations were naturally split in terms of 184 

subaerial/subaqueous. The only visually difficult distinction was then between ‘well’ and 185 

‘poorly’ gravels, which was determined using known grain-size distributions. Since this study 186 

is fully reproducible using software described in section 5.4, the interested reader is 187 

encouraged to explore different subjective groupings of the provided 409 sediment images 188 

and of their own. The process of visually classifying grain shape was more subjective, 189 

especially in the distinction between well-rounded and angular grains in marginal cases. The 190 

process was also iterative; originally, I did not make distinction between large (mean grain 191 

size > 100 pixels) and small (< 100 pixels) grains but the overall classification accuracy was 192 

not as high.  193 

 194 



 195 

Figure 1: Four example 1024 x 1024 pixel subsets of images from each of six population categories. From top to bottom: 1) well-196 
sorted gravel; 2) well-sorted sand and shell hash from underwater camera (described in Buscombe et al., 2014); 3) relatively poorly 197 
sorted gravel and sand-gravel mixtures (including imagery from Warrick et al., 2009); 4) well-sorted sand; 5) miscellaneous 198 
terrigenous and volcaniclastic grains; and 6) miscellaneous bioclastic (carbonate) grains. 199 



 200 

Figure 2. Four example 1024 x 1024 pixel subsets of images from each of four shape categories. From top to bottom: 1) Large well-201 
rounded grains; 2) small well-rounded grains; 3) large angular grains; and 4) small angular grains. 202 

 203 

3. The SediNet model framework 204 

SediNet is a new deep learning model framework that uses ‘end-to-end’ training to extract 205 

relevant features from imagery for a specific optical granulometry task. The framework refers 206 

to the concepts and architecture of the model. Each trained model is a particular instance or 207 

implementation of SediNet that has a specific purpose, which might be measuring a specific 208 

grain size metric, or estimate a categorical variable. Completing those two tasks would 209 



require two different SediNet models, but using the same basic model architecture 210 

repurposed for each task. The example implementations used to exemplify the SediNet 211 

framework, described below, each use the concept of ‘end-to-end’ learning (Goodfellow et 212 

al., 2016) whereby the framework is trained from scratch my optimizing the accuracy of the 213 

output by optimizing the assessment of the relevancy of each extracted image feature to the 214 

specific task. Therefore, the features extracted for grain shape estimation would be different 215 

from those extracted for grain size estimation, for example. However once the model is 216 

trained, it should generalize well to new, unseen imagery not that included in the training set.  217 

 218 

‘End-to-end’ training is different to the concept of ‘transfer learning’, which is the practice of 219 

using model layers to extract features from imagery, then using that ‘feature extractor’ model 220 

to predict an arbitrary set of classes (Buscombe and Ritchie, 2018) or continuous variable. 221 

This approach requires training data consisting of thousands to millions of example images 222 

and labels. I therefore deemed 409 images to be too small a data set for its successful 223 

application, but might be worth exploring in subsequent work with larger training data sets 224 

available. 225 

 226 

3.1. Example SediNet Implementations 227 

SediNet (Figure 3) is a supervised deep neural network model framework that can be used 228 

as presented in this paper, or alternatively configured for custom purposes, by training on 229 

any number of input images for any number of numeric or categorical outputs. For the 230 

purposes of demonstrating the model in this paper, several SediNet models were made: 231 

 232 

1. To estimate nine percentiles of the cumulative grain size distribution in pixels, trained 233 

on 204 images and tested on 205 images, both drawn randomly. The train and test 234 



sets consist of images of several populations of grains from a wide sedimentological 235 

spectrum 236 

2. To estimate nine percentiles of the cumulative grain size distribution in pixels, trained 237 

on 15 images and tested on 16 images of one population (beach sands) 238 

3. To estimate sieve size in microns directly, without first estimating the pixel size, trained 239 

on the same 15 images and tested on 16 images as above 240 

4. To estimate six categorical populations of grains, trained on 204 images and tested 241 

on 205 images, both drawn randomly 242 

5. To estimate four categorical grain shape/size classes, trained on 204 images and 243 

tested on 205 images, both drawn randomly 244 

 245 

 246 



 247 

Figure 3. Schematic of the SediNet architecture, as applied to estimating the grain size distribution, and categorical population and 248 
shape/size. An input image is passed to the feature extractor consisting of a series of convolutional blocks. The last set of feature 249 
maps, which is the result of the last 2D max global pooling layer, is fed into one of three multi-layer perceptrons; one each for the task 250 
of estimating grain size percentiles, sediment population, and grain shape. 251 

 252 

3.2. SediNet architecture 253 

Deep learning models have multiple processing layers (called convolutional layers or blocks) 254 

and nonlinear transformations (that include batch normalization, activation, and dropout, 255 

which are explained below), with the outputs from each layer passed as inputs to the next. 256 

The image feature extractor consists of four convolutional blocks each consisting of a several 257 



two-dimensional convolutional filter layers, batch normalization layers, and two-dimensional 258 

max pooling layers (Figure 3). Batch normalization applies a transformation that maintains 259 

the mean neuron activation of zero and the activation standard deviation of one (Ioffe and 260 

Szegedy, 2015). Pooling layers are used to reduce the spatial dimensions of each of the 261 

three-dimensional tensors associated with each pixel of the input image, from h x w x d to 1 262 

· 1 x d, by averaging over h and w. This has the effect of reducing the total number of 263 

parameters in the model, thereby minimizing overfitting. The output of the last block is the 264 

input of the next. The number of filters increases for each of the four blocks, from 16 in the 265 

first block, 32 in the second, 48 in the third and finally 64 in the last block. After the last 266 

convolutional block, there is one more batch normalization and two-dimensional max pooling 267 

layer, and a dropout layer that randomly drops half the neurons (Srivastava et al., 2014). 268 

Batch normalization, max pooling, and dropout layers are techniques to prevent overfitting 269 

the model (i.e., memorizing the training data rather than learning a general trend). The 270 

extracted feature is fed into a series of multilayer perceptrons, one for each estimated 271 

quantity, that each culminates in a dense predicting layer with linear regression (known in 272 

machine learning literature as a linear activation function) for continuous variable prediction 273 

variables (such as grain size in pixels, or sieve size directly), or multinomial logistic regression 274 

(in machine learning parlance, a softmax activation function) for categorical variables such 275 

as grain shape and population.  276 

 277 

3.3. Training SediNet Implementations 278 

Given the set of n images, let us denote one sample 𝑋𝜇 ∈  ℝ𝑝 with µ = 1 … n, where p is the 279 

number of pixels. For each sample, 𝑋𝜇 there is label 𝑦𝜇 ∈  ℝ𝑞 where q is the number of 280 

combined categorical and continuously distributed classes. Using the deep learning 281 

architecture described above, and the training data set {𝑋𝜇 , 𝑦𝜇} consisting of 50 % of the total 282 



number of images, randomly selected, a function f is found such that �̂� = 𝑓(𝑋), where �̂� is 283 

the predicted set of labels/metrics from sample image X. The remaining 50 % of the total data 284 

set was used as a test set to evaluate model performance.  285 

 286 

The model was retrained ‘end-to-end’, which means it was initialized with random numbers 287 

for neuron weights 𝑤 ∈  ℝ𝑘, then during training the value of those parameters was optimized 288 

by minimizing the discrepancy between known and estimated quantities by minimizing a loss 289 

function 𝐿[𝑓𝑤(𝑋𝜇 , 𝑦𝜇)] for each sample µ where 𝑓𝑤 denotes weighted function. By doing so, 290 

the model simultaneously and automatically learns feature representations from imagery and 291 

a mapping from those features to the target values (e.g. grain size) or classes (e.g. grain 292 

shape). Models are trained over several epochs. One training epoch means that the learning 293 

algorithm has made one pass through the training dataset, where examples were separated 294 

into randomly selected batches of images.  The number of training steps per epoch was 295 

computed as the number of training images divided by the batch size. In this study, the batch 296 

size was set to eight and results were not sensitive to its value (I revisit this in the Discussion). 297 

Upon each step, the gradients of the network are updated and new weights assigned to each 298 

neuron. Stochastic gradient descent was used to iteratively adjusting the weights in the 299 

direction of the gradient of the average of the loss over the training set using 𝑤𝑡+1 = 𝑤𝑡 −300 

𝜆∇𝑤𝑅(𝑓𝑤), where t is iteration number (step within an epoch) and 𝜆 is the so-called ‘learning 301 

rate’, and where 𝑅(𝑓𝑤) = ∑ 𝐿/𝑛 for the full training data is replaced by the contribution of just 302 

a few of the samples.  303 

 304 

During model training, each h x w x 3 pixel input image was resized to 512 x 512 x 3 pixels 305 

for computational efficiency. With sufficient computing power, larger images and larger 306 

numbers of images could be used. That the image’s aspect ratio is typically not preserved 307 



does not affect model performance (I revisit this point in the Discussion). The method was 308 

implemented in python 3.7 using the Tensorflow (Abadi et al., 2015) backend to the keras 309 

(Chollet et al., 2015) module, on a GeForce RTX 2080Ti GPU with 11 GB of memory. The 310 

resolution of a given grain size estimate in pixels is approximately 2 pixels, determined as the 311 

range of that variable in the training data (in the present case, the largest grain size minus 312 

the smallest, which is approximately 1000 pixels) divided by the number of neurons in the 313 

final dense layer, which was set to 512 (Figure 3). Training utilized the popular Adam 314 

algorithm (Kingma and Ba, 2014) for stochastic optimization, with parameters 𝛽1= 0.9 and 315 

𝛽1= 0.999 (Buscombe et al., 2019). During training, 𝜆 was automatically reduced when the 316 

loss function stabilized, i.e. when its value stopped decreasing, by a factor of 0.8 after 15 317 

epochs had elapsed with no improvement (Buscombe et al., 2019). A lower bound on 𝜆 was 318 

set at 0.0001. The maximum number of training epochs was set to 100. Models stopped 319 

training early (i.e. before 100 epochs) if the validation loss failed to improve for 20 consecutive 320 

epochs. Models typically trained for between 40 and 100 epochs before the criterion was met 321 

to stop training early.  322 



 323 

Figure 4. Observed versus estimated grain size percentiles in pixels, for all 409 images. Black dots are the estimate from the training 324 
image set (204 samples). Blue crosses are the estimates from the remaining 205 test images. Red dots are all 409 samples analyzed 325 
using the wavelet method of Buscombe (2013). 326 

 327 

4. Results 328 

4.1. Grain Size 329 

The first implementation of SediNet estimated nine percentiles of the cumulative grain size 330 

distribution in pixels, trained on 204 images with mean error between 24 and 52% depending 331 



on percentile, and tested on 205 images with mean error between 24 and 45% again varying 332 

with percentile (Figures 4 and 5). Mean percent error for each percentile is computed as 100 333 

times the root-mean-squared error normalized by the mean grain size associated with that 334 

percentile. Overall, this SediNet model out-performed the wavelet technique of Buscombe 335 

(2013) and required fewer tunable parameters.  336 

 337 

The second implementation of SediNet was for estimating nine percentiles of the cumulative 338 

grain size distribution in pixels for a smaller population of sediment images from a given 339 

environment (Figure 6). I chose a set of 31 images of sieved beach sand, separated into 16 340 

test and 15 training images. Mean error on the training set was between 7 and 29%, and 341 

between 16 and 29% for the test set (Figure 6, A – I). The third SediNet implementation 342 

estimated sieve size directly from the same imagery without first estimating the grain size in 343 

pixels. Therefore, it implicitly learned the actual size of an image pixel. This model tended to 344 

slightly underestimate grain size, with train and test mean errors of 29 and 22%, respectively. 345 

The slight bias in the prediction might be corrected empirically, such as by means of 346 

parameter x in equation (1), or through further refinement of the model architecture or training 347 

procedure. In all three SediNet grain size models, the mean errors for test and train datasets 348 

were similar, strongly indicating that the model has generalized well to the data and has not 349 

overfit the training data. 350 

 351 



 352 

Figure 5. Example true (solid yellow line) and estimated (dashed red line) cumulative distributions for 20 randomly selected images, 353 
small subsets of which are shown in the background of each subplot. 354 

 355 



 356 

Figure 6. Analysis of one sediment population, consisting of 31 images of sieved beach sands from samples taken at Pescadero in 357 
California (images courtesy of David Rubin). A – I) Observed versus estimated grain size percentiles in pixels where black dots are the 358 
estimate from the training image set (15 samples) and blue crosses are the estimates from the remaining 16 test images.; J) observed 359 
versus estimated mid-sieve size, obtained directly from the image without knowledge of the pixel size; and K – M) example images of 360 
three sieve fractions. 361 

 362 

 363 

4.2. Grain shape and population 364 

The fourth implementation of SediNet estimated six categorical populations of sediment, 365 

trained on 200 images and tested on 200 images, both drawn randomly without replacement. 366 

Classification skill was evaluated using a ‘confusion matrix’ of normalised correspondences 367 

between true and estimated labels (Figure 7, A - C). A perfect correspondence between true 368 

and estimated labels is scored 1.0 along the diagonal elements of the matrix. Random 369 

misclassifications are readily identified as off-diagonal elements with relatively small 370 

magnitudes, and systematic misclassifications are recognized as off-diagonal elements with 371 



relatively large magnitudes. The three confusion matrices for categorical sediment population 372 

shown in Figure 7, A – C show skill for, respectively, training, testing and combined (i.e. all 373 

409 images) data. The model overfits population 2 (underwater images of continental shelf 374 

sand, Figure 1), evidenced by the large discrepancy between training skill (1.0) and test skill 375 

(0.62; Figure 7A, B). However, overfitting is not evident for the other five classes, with test 376 

scores being approximately equal to training scores. All classes are classified with accuracies 377 

of > 70% for the combined model (Figure 7C). 378 

 379 

Figure 7. Confusion matrices for (A – C) categorical population and (D – F) categorical shape. Subplots A and B show training and 380 
testing datasets. Subplot C shows classification accuracies for the combined train and test dataset. 381 

 382 

The fifth and final SediNet implementation reported here was configured to estimate four 383 

categorical grain shape/size classes, trained on 200 images and tested on 200 images, both 384 

drawn randomly. The three confusion matrices for categorical sediment shape shown in 385 



Figure 7D – F show skill for, respectively, training, testing and combined (i.e. all 409 images) 386 

data. The similarity in train and test scores for all four classes demonstrates the model has 387 

not overfit the data. All classes are classified with accuracies of > 85% for the test, train and 388 

combined models (Figure 7D - F). Despite the subjective nature of manual image 389 

classification, the model performed excellently for grain shape. The same is true of population 390 

except that population classes 2 (well-sorted sand and shell hash from underwater camera) 391 

was often mistaken for class 4 (well sorted sand), which made physical sense because both 392 

samples are sand, therefore statistical explanations for the discrepancy were not sought. I 393 

conclude that either the model has not generalized well (i.e. that the ‘sand’ signal is more 394 

dominant than whether or not the imagery is dark/submerged) or that there are too few or too 395 

unequal numbers of images in each class. I revisit the potential effects of this so-called ‘class 396 

imbalance’ in section 5.4.  397 

 398 

5. Discussion 399 

5.1. Potential Applications 400 

The task of quantifying and classifying natural objects and textures in images of sedimentary 401 

landforms is increasingly widespread in a wide variety of geomorphological research 402 

(Franklin and Mulder, 2002; Mulder et al., 2011; Smith and Pain, 2009), especially as imagery 403 

collection using UAVs becomes more prevalent (Carbonneau et al., 2018; Gomez and 404 

Purdie, 2016; Turner et al., 2016). The automated method to size and classify sediment 405 

described here could maximize speed and objectivity of sedimentary description at large 406 

scales, and might be applied to the analysis of datasets consisting of tens to millions of 407 

individual images. The model framework could enable spatio-temporal monitoring of grain 408 

size more efficiently, being configurable to estimate many custom-defined quantities and 409 

qualities for specific tasks. Given it is a data-driven approach, models trained for use in 410 



specific environments will highly likely be as or more accurate than methods such as 411 

Buscombe (2013) and Carbonneau et al., (2004) that are based on signal processing or 412 

random field theory, especially for poorly sorted sediment, small field-of-view, and large grain 413 

size compared to field-of-view (small numbers of individual grains). This is because those 414 

methods are not informed by data (i.e. only tested with data); therefore, the massive variation 415 

in natural sediment can only be a limitation in their application. 416 

 417 

Convolutional neural networks have been particular useful for analysis of images because 418 

they implement invariance to translation and the convolution filters share weights spatially, 419 

which exploits stationarity in the image (Buscombe and Carini, 2019; Goodfellow et al., 2016). 420 

There is typically a lot of stationarity (i.e. repeating spatial patterns) in images of sediment 421 

grains, because the location of grains of all sizes within the image is typically random. This 422 

is especially the case for relatively well-sorted sediment and or images of relatively large 423 

numbers of individual grains, because in those cases grains of all sizes are present in large 424 

numbers throughout the image. Training a deep neural network requires fitting a large 425 

number of parameters, which usually requires large training datasets. This paper has 426 

demonstrated that 409 images might be a sufficiently large data set to train a model that 427 

produces accurate predictions on unseen test images, but I would expect models only to 428 

improve by retraining and refining with more data. Data-driven models should also be highly 429 

accurate for smaller populations given large training data (Figure 6). Another approach to 430 

mitigating any reliance on large datasets is to use simulations to generate supplemental 431 

synthetic training data (e.g. Buscombe, 2013; Buscombe and Rubin, 2012a) or using data 432 

augmentation through random image synthesis (e.g. Buscombe et al., 2019). Given recent 433 

progress in self-supervised deep learning models that do not require data labeling (e.g. Oh 434 

et al., 2019), it might even soon be possible to estimate sedimentological quantities 435 



accurately without manual image classification, manual axes measurements, or some other 436 

form of calibration.   437 

 438 

Figure 8. Activation map outputs from each of the four convolutional blocks (columns) in the SediNet model, for three grain-size 439 
percentiles (rows) for an example image of gravels. Red areas indicate relatively high activation values.   440 

 441 

 442 

5.2. Visualizing How a Model Works 443 

It is useful to visualize which parts of a given image led the model to its final decision. Class 444 

Activation Map (CAM) visualization (Selvaraju et al., 2017) consists of computing 2D grids of 445 



scores associated with a specific output value (such as a specific grain size), computed for 446 

every location in any input image, indicating how important each location is with respect to 447 

the output value. The “gradCAM” technique of Selvaraju et al., (2017) computes the partial 448 

differentiation of the predicted output with respect to each channel in a previous layer (the 449 

layer for which we want visualize CAMs). The gradient of the resulting activations are scores 450 

of how important each channel is for the predicted output, which when multiplied by said 451 

channels acts to weigh each channel responsible for the predicted output. The weighted 452 

channel-wise mean is the CAM. I implemented this technique by computing the gradient of 453 

an image’s estimated grain size with regard to the output feature map of each of the four 454 

convolutional blocks in the SediNet grain-size model (Figure 3). Then I computed the product 455 

of 1) the mean of the gradient over each feature map channel and 2) each channel in the 456 

feature map. Finally, the channel-wise mean of the resulting feature map is our 2D heatmap 457 

of class activation scores. Figure 8 exemplifies this for one example image and the model-458 

estimated grain size associated with the 5th, 50th, and 95th percentiles of the cumulative grain 459 

size distribution (rows in Figure), showing CAMs for all four convolution blocks in the SediNet 460 

grain-size model (Figure columns). One might interpret each of these 12 CAMs as a spatial 461 

map of how intensely the input image activates a specific grain size value, achieved by 462 

weighting a spatial map of how intensely the input image activates different channels in the 463 

convolutional block by another spatial map of how important each channel is with regard to 464 

the grain size value. The analysis demonstrates that each convolution block is weighted to 465 

activate different parts of the input image (Figure 8A). The first and second convolutional 466 

blocks tend to result in activations in grain interstices only, with generally stronger activations 467 

for larger percentiles (compare Figure 8B and 8J, and 8C and 8K). The third and fourth 468 

convolution block results in stronger activations for individual grains and grain outlines with 469 



generally stronger activations for larger percentiles and for the largest grains (compare Figure 470 

8E and 8M).  471 

 472 

 473 

Figure 9. Per-image percent error in three grain-size percentile estimates, as a function of A) the image’s original aspect ratio and B) 474 
the change in aspect ratio due to image resizing. The lack of correlation suggests   475 

 476 

5.3. Image Resolution and Aspect Ratio 477 

The use of SediNet models currently requires that all input imagery to be the same size as 478 

that used to train the model. Images were resized to 512 x 512 x 3 pixels, irrespective or 479 

original size that was typically much larger. However, there is no correlation between 480 

prediction error and an image’s aspect ratio (Figure 9A), nor is there correlation between 481 

error and the change in aspect ratio as a result of resizing to 512 x 512 pixels (Figure 9B). In 482 

addition, there is not a consistent image size or aspect ratio per class; images in most classes 483 

have a wide range of aspect ratios. Therefore, the success of the SediNet approach reveals 484 

two interesting phenomena. First, an image’s aspect ratio does not need necessarily to be 485 

preserved to provide an accurate grain size, shape or population estimate. Second, those 486 



quantities can be estimated even with many subpixel grains, which is the case for relatively 487 

fine grains and/or images that have undergone a relatively large amount of downsizing. This 488 

is because the model apparently learns which textures are associated with each grain size, 489 

at the scale of imagery provided but regardless of the scale and distortion of pixels. Intuitively, 490 

the image texture should be sensitive to image distortion, as it will change the anisotropy of 491 

the grain axis. While aspect ratio preservation may improve model results, warranting further 492 

investigation in subsequent work, there is such a wide variety of image aspect ratios 493 

represented in the training data, from 46% to 139% (Figure 9), that the model training 494 

automatically picks up on image features that are less sensitive to distortion. For example, 495 

Figure 8 clearly demonstrates that the algorithm is largely agnostic to that distortion because 496 

it isn’t activating the pixels associated with individual grains. Rather, it is scaling activations 497 

between grains and interstices to make predictions.  498 

 499 

This observation bodes well for applications of this or similar technique on aerial or satellite 500 

imagery of sedimentary deposits where most grains exist at subpixel scales, but only where 501 

spatial resolution is sufficient to create images textures uniquely diagnostic of grain size. 502 

Optical granulometry methods similar to Carbonneau et al. (2004) operate under the same 503 

principles, except in those methods image features are extracted using prescribed filters (and 504 

their hyperparameters) such as entropy (and kernel size) rather than those features extracted 505 

through an iterative procedure that is optimized to minimize observation-estimate error. That 506 

said a consistent behavior observed in the three SediNet models for grain-size was over-507 

estimation of the size of finer grains. Examination of these images reveals that image 508 

downsizing has degraded the spatial resolution to the point where the distinction between 509 

individual grains cannot be made; therefore, I hypothesize that the model can’t preferentially 510 

activate interstices (cf. Figure 8) for these relatively small grains. Therefore, I conclude that 511 



preservation of image resolution is more important that preservation of aspect ratio for the 512 

success of SediNet models. 513 

 514 

5.4. Using and contributing to SediNet software 515 

This work is fully reproducible using freely available data and code hosted on a github 516 

repository (SediNet software, 2019), which also includes further examples of how to configure 517 

SediNet for different purposes. The motivating idea behind SediNet is community 518 

development of tools for better generic information extraction from images of sediment. You 519 

can use SediNet "off-the-shelf", or other people's models, or configure it for your own 520 

purposes. You can even choose to contribute imagery back to the project, so we can build 521 

bigger and better models collaboratively. Within this package, there are several examples of 522 

different ways it can be configured for estimating categorical variables and various numbers 523 

of continuous variables.  524 

 525 

Instructions are provided for how to run the program locally on a machine, on a cloud 526 

computer, or in a browser through jupyter notebooks. Some notebooks on cloud-hosted 527 

jupyter notebook servers are provided. Users can interact with the software in a few different 528 

ways, to 1) replicate the results of this paper, 2) explore additional provided examples, 3) use 529 

the models built for this paper on their own data, or 4) to train models on their own data for 530 

their own purposes. The program reads a comma-separated (csv) file containing a list of 531 

image file names and the quantities of interest associated with each one. The program is 532 

interacted with using a configuration file that specifies where the training images are, where 533 

the corresponding csv file is, and values for model hyper-parameters. 534 

 535 



I show here that SediNet models can achieve high accuracy for a wide range of sediment 536 

and metrics even on small datasets. However, there are several indications that SediNet 537 

models would improve and be more generally applicable if trained with more data, or better 538 

subsets of sediment populations gleaned from large data sets. For example, the relatively 539 

large classification errors between classes 2, 3 and 4 (Figure 7) may be due to small sample 540 

size. A data set of 400-labeled images, while relatively large by standards set by previous 541 

optical granulometry techniques papers, is very small for deep learning models. Small batch 542 

sizes dictated by small sample sizes may lead to erratic training behavior such as increasing 543 

loss or large fluctuations in loss upon successive epochs, which will produce non-optimal 544 

results. Such small batch sizes may have only worked for the model to estimate sieve sizes 545 

of sand because the sample images were relatively homogeneous in grain shape and size, 546 

and the image-to-image variability in scale, perspective, brightness and contrast was minimal. 547 

In the models trained for this paper, each step of each epoch would randomly select a batch 548 

of 8 training images out of the training set; for a 16-image data set that implies two steps per 549 

epoch and for a 200 image set, 25 steps. These are unusually small for a deep learning 550 

model, but SediNet is relatively small, with thousands to tens-of-thousands of tunable 551 

parameters rather than millions to hundreds of millions of parameters that have made generic 552 

societally oriented breakthroughs in strategy games, image recognition, self-driving cars, fake 553 

video, etc. Larger, more general models will likely require much larger data sets. 554 

 555 

Users are therefore strongly encouraged to contribute data. This is best achieved by 556 

submitting a ‘pull request’ to a special repository designed for collaboration (SediNet 557 

collaborative software, 2019). Initially, this is a copy of the main github repository (SediNet 558 

software, 2019) until the first user-contributed dataset. Users contribute data by forking this 559 

repository, adding their files to their forked version, optionally adding their name and contact 560 



details to the list of contributors, then make a pull request. The main repository moderator 561 

reviews and merges the changes into the main repository. Code improvements may also be 562 

suggested in this way. Models can then be periodically retrained using the new data. Over 563 

time, if enough new imagery is amassed, model architecture may need to change by adding 564 

or changing convolution layers in order to uncover and exploit additional useful features 565 

extracted from the new data. 566 

 567 

Future changes to model architecture should handle the effects of class imbalance, which is 568 

where different classes have many different numbers of examples. For example, the unequal 569 

numbers of images in population classes 2, 3 and 4 (Figure 7A, B) may be behind the 570 

misclassifications. If the training set consists of many more images of one class than another, 571 

the model may tend to classify the class better represented in the set. This might be overcome 572 

by weighting the cost function used to train the model by the relative abundance of classes 573 

in the data set. Weighted cross-entropy is a popular choice in the deep learning literature. 574 

 575 

Conclusions 576 

I have described a configurable machine-learning framework called SediNet for estimating 577 

either (or both) continuous and categorical variables from a photographic image of clastic 578 

sediment. To demonstrate the framework, five separate models were configured and trained, 579 

three of which for estimating various grain size metrics on both mixed and single populations 580 

of sediment, and two for  classifying aspects of grain shape and population. Perhaps of most 581 

significance is that SediNet can be configured and trained to estimate equivalent sieve 582 

diameters directly from image features, without the need for area-to-mass conversion 583 

formulas and without even knowing the scale of one pixel. As such, it is the only optical 584 

granulometry method proposed to date that does not necessarily require image scaling. 585 



SediNet will allow for reliable estimation of several sedimentological variables from arbitrary 586 

imagery of sediment, where grains may be either supra- or sub-pixel in scale, and where 587 

conversions between grain size measurements on different physical or statistical scales 588 

might be learnt directly from the data. The model framework should therefore find numerous 589 

application in the spatio-temporal monitoring of the grain size distribution, shape, mineralogy 590 

and other quantities of interest, of sedimentary deposits as they evolve. This study has also 591 

served to exemplify how machine learning can be a powerful tool for automated and 592 

simultaneous quantitative and qualitative measurements from the same remotely sensed 593 

imagery.  594 

 595 

Acknowledgments 596 

Thanks to Evan Goldstein and Cedric John for their review comments that collectively 597 

improved the manuscript. 598 

References 599 

1. Abadi M.; Agarwal A.; Barham P.; Brevdo E.; Chen Z.; and 35 others. 2015. 600 

TensorFlow: Large-scale machine learning on heterogeneous systems. Software 601 

available online: https://www.tensorflow.org (accessed on 1 July, 2019). 602 

2. Adams J. 1979. Gravel size analysis from photographs. Journal of the Hydraulics 603 

Division. American Society of Civil Engineers: 1247–1255. 604 

3. Austin, M.J., Masselink, G., O'Hare, T.J. and Russell, P.E. 2007. Relaxation time 605 

effects of wave ripples on tidal beaches. Geophysical Research Letters, 34(16). 606 

4. Baptista, P., Cunha, T., Gama, C., and Bernardes, C. 2012. A new and practical 607 

method to obtain grain size measurements in sandy shores based on digital image 608 

acquisition and processing. Sedimentary Geology, 282, 294–306. 609 

https://www.tensorflow.org/


5. Barnard, P., Rubin, D., Harney, J., and Mustain, N. 2007. Field test comparison of an 610 

autocorrelation technique for determining grain size using a digital beachball camera 611 

versus traditional methods. Sedimentary Geology, 201 (1-2), 180–195. 612 

6. Bergillos, R.J., Ortega-Sánchez, M., Masselink, G. and Losada, M.A. 2016. Morpho-613 

sedimentary dynamics of a micro-tidal mixed sand and gravel beach, Playa Granada, 614 

southern Spain. Marine Geology, 379, 28-38. 615 

7. Black, M., Carbonneau, P., Church, M., and Warburton, J. 2014. Mapping sub-pixel 616 

fluvial grain sizes with hyperspatial imagery. Sedimentology, 61 (3), 691–711. 617 

8. Buscombe, D. 2013. Transferable wavelet method for grain-size distribution from 618 

images of sediment surfaces and thin sections, and other natural granular patterns. 619 

Sedimentology, 60 (7), 1709–1732. 620 

9. Buscombe, D., and Carini, R. J. 2019. A data-driven approach to classifying wave 621 

breaking in infrared imagery. Remote Sensing, 11 (7), 859. 622 

10. Buscombe, D., Carini, R., Harrison, S., Chickadel, C., and Warrick, J. 2019. Optical 623 

wave gauging with deep neural networks. Coastal Engineering, in review July 2019 624 

11. Buscombe, D. and Masselink, G. 2006. Concepts in gravel beach dynamics. Earth-625 

Science Reviews, 79 (1-2), 33-52. 626 

12. Buscombe, D. and Ritchie, A. 2018. Landscape classification with deep neural 627 

networks. Geosciences, 8 (7), 244. 628 

13. Buscombe, D., and Rubin, D. M.  2012a. Advances in the simulation and automated 629 

measurement of well-sorted granular material:  1. Simulation. Journal of Geophysical 630 

Research: Earth Surface, 117 (F2). 631 

14. Buscombe, D., and Rubin, D. M.  2012b. Advances in the simulation and automated 632 

measurement of well-sorted granular material:  2. Direct measures of particle 633 

properties. Journal of Geophysical Research: Earth Surface, 117 (F2). 634 



15. Buscombe, D., Rubin, D. M., Lacy, J. R., Storlazzi, C. D., Hatcher, G., Chezar, H., and 635 

Sherwood, C. R. 2014. Autonomous bed-sediment imaging-systems for revealing 636 

temporal variability of grain size. Limnology and Oceanography: Methods, 12 (6), 390–637 

406. 638 

16. Buscombe, D., Rubin, D., and Warrick, J. 2010. A universal approximation of grain 639 

size from images of noncohesive sediment. Journal of Geophysical Research: Earth 640 

Surface, 115 (F2). 641 

17. Carbonneau, P., Bizzi, S., and Marchetti, G. 2018. Robotic photosieving from low-cost 642 

multirotor sUAS: A proof-of-concept. Earth Surface Processes and Landforms, 43 (5), 643 

1160–1166. 644 

18. Carbonneau PE, Bergeron N, Lane SN. 2005a. Automated grain size measurements 645 

from airborne remote sensing for long profile measurements of fluvial grain sizes. 646 

Water Resources Research: 41. 647 

19. Carbonneau PE, Bergeron NE, Lane SN. 2005b. Texture‐based image segmentation 648 

applied to the quantification of superficial sand in salmonid river gravels. Earth Surface 649 

Processes and Landforms 30: 121–127. 650 

20. Carbonneau, P.E., Lane, S.N. and Bergeron, N.E. 2004. Catchment‐scale mapping of 651 

surface grain size in gravel bed rivers using airborne digital imagery. Water Resources 652 

Research, 40 (7). 653 

21. Chollet, F. 2015. Keras. Software available online: https://keras.io (accessed on 1 July, 654 

2019). 655 

22. Cheng, Z. and Liu, H. 2015. Digital grain-size analysis based on autocorrelation 656 

algorithm. Sedimentary Geology, 327, 21-31. 657 

https://keras.io/


23. Cuttler, M. V., Lowe, R. J., Falter, J. L., and Buscombe, D. 2017. Estimating the settling 658 

velocity of bioclastic sediment using common grain-size analysis techniques.  659 

Sedimentology, 64 (4), 987–1004. 660 

24. Detert M, Weitbrecht V. 2012. Automatic object detection to analyze the geometry of 661 

gravel grains – a free stand‐alone tool. In River Flow, 2012, Munoz RM (ed). CRC 662 

Press: London; 595–600. 663 

25. Diplas, P. and Fripp, J.B. 1992. Properties of various sediment sampling procedures. 664 

Journal of Hydraulic Engineering, 118, 955–970. 665 

26. Diplas, P., Kuhnle, R.A., Gray, J.R., Glysson, G.D. and Edwards, T.E. 2008. 666 

Sediment transport measurements. In: Sedimentation Engineering: Processes, 667 

Measurements, Modeling, and Practice (Ed. M.H. Garcia), 110, 307–353. American 668 

Society of Civil Engineering Manuals and Reports on Engineering Practice, Reston, 669 

VA 670 

27. Diplas, P. and Sutherland, A.J. 1988. Sampling techniques for gravel sized sediments. 671 

Journal of Hydraulic Engineering, 114, 484–501. 672 

28. Dugdale, S. J., Carbonneau, P. E., and Campbell, D.  2010. Aerial photosieving of 673 

exposed gravel bars for the rapid calibration of airborne grain size maps. Earth Surface 674 

Processes and Landforms, 35 (6), 627–639. 675 

29. Franklin, S., and Wulder, M.  2002. Remote sensing methods in medium spatial 676 

resolution satellite data land cover classification of large areas. Progress in Physical 677 

Geography, 26 (2), 173–205. 678 

30. Gomez, C., and Purdie, H. 2016. UAV-based photogrammetry and geocomputing for 679 

hazards and disaster risk monitoring–A review. Geoenvironmental Disasters, 3 (1), 23. 680 

31. Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y. 2016. Deep learning (Vol. 1).  681 

MIT press Cambridge. 682 

32. Graham DJ, Reid I, Rice SP. 2005. Automated sizing of coarse‐grained sediments: 683 

image‐processing procedures. Mathematical Geology 37: 1–28. 684 



33. Graham, D., Rollet, A., Rice, S., and Piegay, H. 2012. Conversions of surface grain-685 

size samples collected and recorded using different procedures. Journal of Hydraulic 686 

Engineering, 138 (10), 839–849. 687 

34. Ioffe, S., and Szegedy, C. 2015. Batch normalization:  Accelerating deep network 688 

training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167. 689 

35. Jiang, G.-Q., Xu, J., and Wei, J. 2018. A deep learning algorithm of neural network for 690 

the parameterization of typhoon-ocean feedback in typhoon forecast models. 691 

Geophysical Research Letters, 45 (8), 3706–3716. 692 

36. Kellerhals, R., and Bray, D. I. 1971. Sampling procedures for coarse fluvial sediments. 693 

Journal of the Hydraulics Division, 97 (8), 1165–1180. 694 

37. Kingma, D. P., and Ba, J. 2014. Adam:  A method for stochastic optimization. 695 

arXivpreprint arXiv:1412.6980. 696 

38. Legleiter, C.J., Stegman, T.K. and Overstreet, B.T. 2016. Spectrally based mapping 697 

of riverbed composition. Geomorphology, 264, 61-79. 698 

39. Linville, L., Pankow, K., and Draelos, T. 2019. Deep learning models augment analyst 699 

decisions for event discrimination. Geophysical Research Letters, 46 (7), 3643–3651. 700 

40. Luo, J. Y., Irisson, J.-O., Graham, B., Guigand, C., Sarafraz, A., Mader, C., and 701 

Cowen, R. K. 2018. Automated plankton image analysis using convolutional neural 702 

networks. Limnology and Oceanography: Methods, 16 (12), 814–827. 703 

41. Masteller, C.C. and Finnegan, N.J. 2017. Interplay between grain protrusion and 704 

sediment entrainment in an experimental flume. Journal of Geophysical Research: 705 

Earth Surface, 122 (1), 274-289. 706 

42. Michaelides, K., Hollings, R., Singer, M.B., Nichols, M.H. and Nearing, M.A. 2018. 707 

Spatial and temporal analysis of hillslope–channel coupling and implications for the 708 



longitudinal profile in a dryland basin. Earth Surface Processes and Landforms, 43 (8), 709 

1608-1621. 710 

43. Montgomery, D. R., Panfil, M. S., and Hayes, S. K. 1999. Channel-bed mobility 711 

response to extreme sediment loading at Mount Pinatubo. Geology, 27 (3), 271–274. 712 

44. Mulder, V., De Bruin, S., Schaepman, M., and Mayr, T. 2011. The use of remote 713 

sensing in soil and terrain mapping: A review. Geoderma, 162 (1-2), 1–19. 714 

45. Nield, J.M., Wiggs, G.F. and Squirrell, R.S. 2011. Aeolian sand strip mobility and 715 

protodune development on a drying beach: examining surface moisture and surface 716 

roughness patterns measured by terrestrial laser scanning. Earth Surface Processes 717 

and Landforms, 36 (4), 513-522. 718 

46. Novak-Szabo, T., Sipos, A.A., Shaw, S., Bertoni, D., Pozzebon, A., Grottoli, E., 719 

Jerolmack, D. J. 2018. Universal characteristics of particle shape evolution by bed-720 

load chipping. Science Advances, 4 (3). 721 

47. Oh, C., Ham, B., Kim, H., Hilton, A. and Sohn, K. 2019. OCEAN: Object-centric 722 

arranging network for self-supervised visual representations learning. Expert Systems 723 

with Applications, 125, 281-292. 724 

48. Paterson, G. A., and Heslop, D. 2015. New methods for unmixing sediment grainsize 725 

data. Geochemistry, Geophysics, Geosystems, 16 (12), 4494–4506. 726 

49. Pfeiffer, A. M., Finnegan, N. J., and Willenbring, J. K. 2017.   Sediment supply controls 727 

equilibrium channel geometry in gravel rivers. Proceedings of the National Academy 728 

of Sciences, 114 (13), 3346–3351. 729 

50. Prodger, S., Russell, P., Davidson, M., Miles, J. and Scott, T. 2016. Understanding 730 

and predicting the temporal variability of sediment grain size characteristics on high-731 

energy beaches. Marine Geology, 376, 109-117. 732 



51. Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N. 733 

2019. Deep learning and process understanding for data-driven Earth system science. 734 

Nature, 566 (7743), 195. 735 

52. Rickenmann, D., and Recking, A. 2011. Evaluation of flow resistance in gravel-bed 736 

rivers through a large field data set. Water Resources Research, 47 (7). 737 

53. Rubin, D. 2004. A simple autocorrelation algorithm for determining grain size from 738 

digital images of sediment. Journal of Sedimentary Research, 74 (1), 160–165. 739 

54. Rubin, D., Buscombe, D., Wright, S., Topping, D., Grams, P., and Schmidt, J. 2019. 740 

What grain size reveals about suspended-sand transport in the Colorado River in 741 

Grand Canyon. Journal of Geophysical Research - Earth Surface, in review. 742 

55. Rubin, D., Chezar, H., Harney, J., Topping, D., Melis, T., and Sherwood, C. 2007. 743 

Underwater microscope for measuring spatial and temporal changes in bed-sediment 744 

grain size. Sedimentary Geology, 202 (3), 402–408 745 

56. Sedinet v.1.0 online and data repository software. 2019. 746 

https://github.com/MARDAScience/SediNet. http://doi.org/10.5281/zenodo.3466045 747 

57. Sedinet collaborative software and data repository. 2019. 748 

https://github.com/MARDAScience/SediNet-Contrib. 749 

58. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D. and Batra, D. 2017. 750 

Grad-cam: Visual explanations from deep networks via gradient-based localization. In: 751 

Proceedings of the IEEE International Conference on Computer Vision, 618-626. 752 

59. Shoji, D., Noguchi, R., Otsuki, S. and Hino, H. 2018. Classification of volcanic ash 753 

particles using a convolutional neural network and probability. Scientific Reports, 8 (1), 754 

8111. 755 

60. Smith, M., and Pain, C. 2009. Applications of remote sensing in geomorphology. 756 

Progress in Physical Geography, 33 (4), 568–582. 757 

https://github.com/MARDAScience/SediNet
http://doi.org/10.5281/zenodo.3466045
https://github.com/MARDAScience/SediNet


61. Smith, M.E., Werner, S.H., Buscombe, D., Finnegan, N.J., Sumner, E.J. and Mueller, 758 

E.R. 2018. Seeking the shore: Evidence for active submarine canyon head incision 759 

due to coarse sediment supply and focusing of wave energy. Geophysical Research 760 

Letters, 45 (22), 12-403. 761 

62. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. 2014.  762 

Dropout:  a simple way to prevent neural networks from overfitting. The Journal of 763 

Machine Learning Research, 15 (1), 1929–1958. 764 

63. Sternberg, R.W., Berhane, I. and Ogston, A.S. 1999. Measurement of size and settling 765 

velocity of suspended aggregates on the northern California continental shelf. Marine 766 

Geology, 154 (1-4), 43-53. 767 

64. Turner, I. L., Harley, M. D., and Drummond, C. D. 2016. UAVs for coastal surveying. 768 

Coastal Engineering, 114, 19–24. 769 

65. Turner, I.L., Russell, P.E. and Butt, T. 2008. Measurement of wave-by-wave bed-770 

levels in the swash zone. Coastal Engineering, 55 (12), 1237-1242. 771 

66. Viles, H. 2016. Technology and geomorphology:  Are improvements in data collection 772 

techniques transforming geomorphic science? Geomorphology, 270, 121–133. 773 

67. Warrick, J.A., Rubin, D.M., Ruggiero, P., Harney, J.N., Draut, A.E. and Buscombe, D. 774 

2009. Cobble Cam: Grain‐size measurements of sand to boulder from digital 775 

photographs and autocorrelation analyses. Earth Surface Processes and Landforms, 776 

34 (13), 1811-1821. 777 

68. Wheatcroft, R.A. and Borgeld, J.C. 2000. Oceanic flood deposits on the northern 778 

California shelf: large-scale distribution and small-scale physical properties. 779 

Continental Shelf Research, 20 (16), 2163-2190. 780 



69. Williams, R.D., Brasington, J., Vericat, D. and Hicks, D.M. 2014. Hyperscale terrain 781 

modelling of braided rivers: fusing mobile terrestrial laser scanning and optical 782 

bathymetric mapping. Earth Surface Processes and Landforms, 39 (2), 167-183. 783 

70. Woodget, A., and Austrums, R. 2017. Subaerial gravel size measurement using topo-784 

graphic data derived from a UAV-SfM approach. Earth Surface Processes and 785 

Landforms, 42 (9), 1434–1443. 786 

71. Woodget, A., Fyffe, C., and Carbonneau, P. 2018. From manned to unmanned aircraft:  787 

Adapting airborne particle size mapping methodologies to the characteristics of sUAS 788 

and SfM. Earth Surface Processes and Landforms, 43 (4), 857–870. 789 


